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Abstract
Regular expressions are used for a wide variety of purposes
from web-page input validation to log file crawling. Very
often, they are used not only to match strings, but also to
extract data from them. Unfortunately, most regular expres-
sion engines only return a list of the substrings captured by
the regular expression. The data has to be extracted from the
matched substrings to be validated and transformed manu-
ally into a more structured format.

For richer classes of grammars like CFGs, such issues can
be solved using type-indexed combinators. Most combinator
libraries provide a monadic API to track the type returned
by the parser through easy-to-use combinators. This allows
users to transform the input into a custom data-structure
and go through complex validations as they describe their
grammar.

In this paper, we present the Tyre library which provides
type-indexed combinators for regular languages. Our com-
binators provide type-safe extraction while delegating the
task of substring matching to a preexisting regular expres-
sion engine. To do this, we use a two layer approach where
the typed layer sits on top of an untyped layer. This tech-
nique is also amenable to several extensions, such as routing,
unparsing and static generation of the extraction code. We
also provide a syntax extension, which recovers the familiar
and compact syntax of regular expressions. We implemented
this technique in a very concise manner and evaluated its
usefulness on two practical examples.

CCS Concepts • Theory of computation → Regular
languages; Parsing; • Software and its engineering →
Functional languages;

Keywords Functional programming, Static typing, Regular
expressions, unparsing, OCaml
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1 Introduction
Regular expressions are used in a wide variety of contexts,
from checking inputs of web forms to extracting data con-
tained in text files. In many cases, the goal of the regular
expression is not only to match a given text, but also to ex-
tract information from it through capture groups. Capture
groups are annotations on parts of the regular expression
that indicates that the substring matched by these subex-
pressions should be returned by the matching engine. For
instance, "([a-zA-Z]*):([0-9]*)" matches strings of the
form "myid:42" and captures the part before and after the
colon.
Extraction using capture groups, however, only returns

strings. In the regex above, the semantics we assign to the
second group is clearly the one of a number, but this infor-
mation is not provided to the regular expression engine, and
it is up to the programmer to parse the stream of digits into a
proper integer. This problem only grows more complex with
the complexity of the data to extract. For instance, if we were
to consider parsing URIs with regular expressions, we would
need to extract a complex structure with multiple fields, lists
and alternatives. Even static typing does not help here, since
all the captured fields are strings! This problem, often de-
scribed as input validation, can not only be the source of
bugs but also serious security vulnerabilities.

One approach that might help is to rely on “full regular ex-
pression parsing” which consists in returning the parsetree
of a string matched by a given regular expression. This is gen-
erally coupled with an interpretation of regular expressions
as types to determine the shape of the resulting parsetree: a
concatenation of regular expression is interpreted as a prod-
uct type, an alternative as a sum type and the Kleene star as
a list, thus forming a small algebra of types that reflects the
compositional properties of regular expressions.

Full regular expression parsing is not completely sufficient:
indeed we want both the ability to use structured types, but
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also to transform and verify the input. We also want to ig-
nore the semantically-irrelevant parts of the string. A final
problem is that full regular expression parsing is a very rare
feature among regex engines. Mature implementations such
as Re2 [Cox 2010], PCRE [Hazel 2015], Javascript regular
expressions [ECMAScript 2018] or Hyperscan [Intel 2018]
do not provide it. While writing a new regular expression
engine might seem tempting, writing a featureful, efficient
and portable engine that supports features such as online
determinization, lookarounds operators and both POSIX and
greedy semantics is a significant undertaking, as demon-
strated by the projects listed above.

In this paper, we present a technique to provide type-safe
extraction based on the typed interpretation of regular ex-
pressions while delegating the actual matching to an external
regular expression engine that only supports substring ex-
traction. This provides users with the convenience and type-
safety of parsing combinators, while using a mature regular
expression engine. Our technique relies on two-layer regular
expressions where the upper layer allows to composes and
transforms data in a well-typed way, while the lower layer
is simply composed of untyped regular expressions that can
leverage features from the underlying engine. This two-layer
approach is also compatible with routing, unparsing, and
either online of offline compilation of regular expressions.
We implemented our technique in the OCaml Tyre package,
along with a syntax extension that allows the use of a syn-
tax similar to PCREs. While our main implementation relies
on ocaml-re, an optimized and mature regular expression
library for OCaml, we also implemented it as an OCaml func-
tor (i.e., a function over modules) that is independent of the
engine.
Our main contribution is the design and the implemen-

tation of Tyre, including a typed transformation technique
which can be used to decompose such input validation prob-
lems into an untyped parsing step which can be delegated
to preexisting engines, and a validation step. The rest of the
paper is structured as followed. We first introduce typed
regular expressions through real world code examples that
uses Tyre in Section 2. We then describe our technique in
Sections 3 and 4. We evaluate the expressivity and the perfor-
mance claims in Section 5. Finally, we compare with existing
approaches in Section 6 and conclude.

2 The Tyre library
Tyre has been used in real-world applications for parsing,
printing and routing complex regular-expression-based for-
mats such as logs and URLs. To introduce Tyre, we use the ex-
ample of a simple website that classifies species of the Camel-
idae family. Regular expressions match URLs and define a
REST API for our Camelidae classifiers. For instance, we
could obtain information on a specific species with the URL
camelidae.ml/name/Dromedary/, or we could list Camelids

1 open Tyre
2

3 let name : string Tyre.t = [%tyre "[[:alnum:]␣]+"]
4

5 let host : < domain:string ; port:int option > Tyre.t =
6 [%tyre "(?<domain>[^/:?#]+)(:(?<port>(?&int)))?"]
7

8 let api = function%tyre
9 |"(?&h:host)/name/(?&species:name)"
10 -> h, ‘Host species
11 |"(?&h:host)/hump/(?&hump:int)(\?extinct=(?&b:bool))?"
12 -> h, ‘Hump (hump, b)

Figure 1. HTTP endpoints for a website to classify camlids.

that have two humps through the URL camelidae.ml/humps/
2. Finally, we want the ability to filter extinct species by
adding ?extinct=true to the URL. Writing such API with nor-
mal regular expressions is often delicate since it not only
needs to match the URL, but also to extract and convert parts
of it. In the rest of this section, we assume basic familiarity
with OCaml.

Figure 1 implements the routing for this REST API with
typed regular expressions with automatic extraction. It uses
an extended syntax similar to Perl Compatible Regular Ex-
pressions. We first define two independent typed regular
expressions, name (Line 3) and host (Line 5), we then define
our two URL endpoints and name the resulting route in api
(Line 8). For ease of understanding, we added some type
annotations, but they are not necessary.
The syntax [%tyre "..."] specifies a typed regular ex-

pression using the PCRE syntax. The name typed regular
expression defined Line 3 is in fact a normal regular expres-
sion which recognizes species names made of a non-empty
succession of alphanumerical characters and spaces. The
resulting value is of type string Tyre.t which represents
a typed regular expression Tyre.t which captures data of
type string.

The host regular expression defined Line 5 matches (sim-
plified) host names composed of a domain and an optional
port using the syntax "foo.com:123". To capture these two
parts, it uses two named capture groups for the domain and
the port, using the syntax "(?<name>re)". Since we have
two named capture groups, the regex host captures a do-
main and a port. The type indeed shows we capture an object
with two fields. The domain is represented by the regular
expression [^/:?#]+ and thus captured as a string. The port
is represented by (?&int) which uses another regular ex-
pression previous declared, in this case Tyre.int of type
int Tyre.t capturing an integer. Since the port is optional,
the name capture is wrapped by an option denoted with the
syntax (...)?. This also changes the type of the capture to
be an int option. The type of the capture for host is thus

camelidae.ml/name/Dromedary/
camelidae.ml/humps/2
camelidae.ml/humps/2
?extinct=true
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<domain:string; port:int option>, which is an object
with two fields, domain of type string, and port of type
int option. Unlike usual PCREs, normal parentheses do
not capture their content and are only used for priorities,
like in the option in the case above.
Given these two regular expressions name and host, we

can finally define the routing for our REST API. The routing
regular expression is named api on Line 8 and defines two
routes for search by names and by number of humps. It
uses a syntax similar to pattern matching, but takes (typed)
regular expressions. The syntax (?&h:host) is a shortcut
for (?<h>(?&host)) and means that it uses the regex host
and binds the capture to h. The constant part of the path,
/name/, is not captured and does not influence the type of
the capture. In the /hump/ path, we also capture a boolean
that indicates if we must consider extincts Camelids. As said
before, normal parentheses are non-capturing in Tyre, but
since the query argument is optional, we use ?. The type of
b is thus bool option.

A note on performance While well known in theory, the
practical performance of regular expressions is a delicate
topic. In particular, the various Perl additions go far beyond
the definition of regular languages. In Tyre, the typed layer
is only composed of regular operators. The untyped layer
however can use many features from the underlying engine
and thus depends on its complexity. Regardless of this, com-
position of typed regular expressions, including through the
syntax "(?&re)", is free. The main implementation of Tyre
relies on ocaml-re, an efficient OCaml library for regular
expression matching using a lazy-DFA approach which pro-
vides matching in linear time.

2.1 Matching, routing and unparsing
In the previous example, we defined two regular expressions
and a router. Tyre also provides an API to use typed regular
expressions, presented in Figure 2. While the type of name
and host is Tyre.t, the router api is in fact of type Tyre.re
which represents the type of compiled regular expressions.
The Tyre.compile function compiles arbitrary typed reg-
ular expressions while Tyre.route allows routing, as pre-
sented previously. Both return compiled regular expressions
of type Tyre.re. Compiled typed regular expressions can be
used with Tyre.exec, as shown below. We use the standard
result type to account for errors. Here, the matching is a
success, as shown by the Result.Ok constructor.

1 # Tyre.exec api "camlidae.ml/name/Bactrian␣camel"
2 - : (domain * [ ‘Host of string | ‘Hump of int * bool

option ], error) result
3 = Result.Ok (camlidae.ml:-, ‘Host "Bactrian␣camel")

Regular expressions can also be unparsed with Tyre.eval.
Unparsing consists of taking some fully formed data-structure
of type 'a and a typed regular expression of type 'a Tyre.t,

1 type 'a t
2 (* A typed regular expression capturing
3 data of type 'a *)
4

5 type 'a re
6 (** A compiled typed regular expression of type 'a *)
7

8 val compile : 'a t -> 'a re
9

10 val route : 'a route list -> 'a re
11 (** [route [ tyre1 --> f1 ; tyre2 --> f2 ]] produces
12 a compiled tyregex such that, if [tyre1] matches,
13 [f1] is called, and so on. *)
14

15 val exec : 'a re -> string -> ('a, error) result
16 (** [exec cre s] matches the string [s] with [cre] and
17 returns the extracted value. *)
18

19 val eval : 'a t -> 'a -> string
20 (** [eval re v] returns a string [s] such
21 as [exec (compile re) s = v] *)

Figure 2. API to use Typed Regular Expressions

and output a string such that matching would provide the
same data. We use it below to provide easy and automatic
construction of links that will be automatically compatible
with our REST API.

1 # let link_name h s =
2 Tyre.eval [%tyre "(?&host)/name/(?&name)"] (h, s)
3 val link_name : domain -> string -> string

Unparsing can’t fail but the result is not unique. Indeed, in
the regular expression "[a-z]*(?<number>[0-9]+)", only
the number part is captured and the rest needs to be syn-
thesized. This is where the properties of regular languages
come into play, as we will see in Section 4.4.

2.2 Regular expressions without the sugar
As any tea or coffee aficionado will tell you, the flavor is
best enjoyed without sugar. In the previous section, we used
syntactic sugar to provide a familiar PCRE-like regular ex-
pression syntax. This syntax is implemented by simple de-
composition into a set of combinators that are presented in
Figure 3.

2.2.1 Simple combinators and composition
Just like before, the host is directly recognized by a regular
expression as a string. The Tyre.pcre combinator allows to
provide an untyped regular expression in PCRE syntax and
will capture a string. This regular expression is completely
untyped, and can thus use most features from the underlying
engine.
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1 let host : string Tyre.t = Tyre.pcre "[^/:?#]+"

To construct regular expressions with more complex ex-
tractions, we use operators such as <&> and *>. <&>, also
called “seq”, allows to compose regular expression sequen-
tially. The data captured by re1 <&> re2 is the pair of the
data captured by re1 and re2. Similarly, *>, also called “pre-
fix”, composes regular expression sequentially but ignores
the data captured by the left hand side and only returns the
data capture by the right part. By combining these operators,
we can decide exactly which parts of the data we want to
capture, in this case the host name and the species name. We
obtain a regular expression which captures a pair of strings.
Tyre.str allows us to define a constant regular expression
that will always parse the given regular string "/name/" and
return a unit.

1 let name : string Tyre.t = Tyre.pcre "[[:alpha:]␣]"
2 let by_name
3 : (string * string) Tyre.t
4 = host <&> (Tyre.str "/name/" *> name)

2.2.2 Introducing new data types
Previously, we used the combinator Tyre.int: int Tyre.t
which matches the regular expression [0-9]* and returns an
integer. The definition is shown below. It uses the construc-
tor Tyre.conv to transform the data captured by a regular
expression using two functions that turn 'a into 'b back and
forth. It then returns a regular expression matching the same
content, but capturing data of type 'b. Here, we use it with
the two functions string_of_int and int_of_string to
convert back and forth between integers and strings.

1 let int : int Tyre.t =
2 Tyre.conv string_of_int int_of_string
3 (Tyre.pcre "[0-9]+")

More complex and structured types can be introduced. For
instance one might note that our syntax extension returns
object with fields corresponding to named capture groups
even though our <&> combinator returns tuples. To do so, we
write a converter that converts back and forth between these
representations, as below. Of course, we are not limited to
objects: records or smart constructors can also be used for
instance.

1 let host =
2 let to_ (domain, port) = object
3 method domain = domain
4 method port = port
5 end
6 in
7 let of_ o = (o#domain, o#port) in
8 conv to_ of_
9 (pcre "[^/:?#]+") <&> opt (str":" *> int))

1

2 val pcre : string -> string t
3 (* [pcre "re"] parses the given PCRE and captures the

matched string. *)
4

5 val str : string -> unit t
6 (* [str "..."] parses the given constant string and

captures no data. *)
7

8 val (<&>) : 'a t -> 'b t -> ('a * 'b) t
9 (* [re1 <&> re2] matches [re1] then [re2] and captures

the pairs. *)
10

11 val ( *>) : _ t -> 'a t -> 'a t
12 (* [re1 *> re2] is [re1 <&> re2] but ignores the capture

by [re1]. *)
13

14 val (<|>) : 'a t -> 'b t -> [‘Left of 'a|‘Right of 'b] t
15 (* [re1 <|> re2] matches [re1] or [re2] and captures

their data. *)
16

17 val opt : 'a t -> 'a option t
18 val list : 'a t -> 'a list t
19

20 val conv : ('a -> 'b) -> ('b -> 'a) -> 'a t -> 'b t
21 (** [conv to_ from_ re] matches the same text as [re],
22 but transforms the captured data. *)

Figure 3. Combinator API to create Typed Regular Expres-
sions

One strength of this approach is that it puts the conver-
sion functions together with the definition of the regular
expressions. The conversion and validation functions are
thus not only easier to verify, since the definitions are closer,
but also to compose since simply composing the typed regu-
lar expressions is sufficient. This ease of composition allow
programmers to scale to more complex grammars, as we
show in Section 5.

3 Untyped regular expressions
Before presenting compilation, matching and unparsing for
typed regular expressions, let us detail what we expect from
the underlying untyped regular expression engine.We present
this expected API as a module type RE shown in Figure 4.

Untyped regular expressions, represented by the type re,
feature the usual regular operators alt, concat and star
along with the base operator char. For simplicity we don’t
parameterize over the type of symbols, although that would
be equally easy. We also assume that grouping is explicit,
through the group and rm_group functions which respec-
tively adds a group over a given regular expression and
removes all underlying groups. The regular expression type
can also contains other arbitrary operators (character sets,
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lookaround operators, bounded repetitions, . . . ). Finally, we
assume the existence of an explicit compile function which
takes a regular expression and turns it into an automaton.
This API is not particularly unusual (although it is rarely ex-
pressed in terms of combinators) and can be directly mapped
to the syntax of most regular expression engines.

Matching The literature on regular expression often dis-
tinguishes three levels of matching for regular expressions:

• Acceptance test, which returns a boolean.
• Substring matching, which returns an array where
each index corresponds to a capture group. If the cap-
ture groupmatches, the substring is placed at the index.
For capture groups under repetitions, the usual choice
is to only returns the last matched substring.

• Full RE parsing, which returns the complete parsetree
captured by the regular expression.

Here, we assume that the underlying engine only supports
substring matching. The exec function takes a compiled
regular expression, a string, and returns a list of groups
which can be queried by indices. We also take the start and
end position of the substring on which the matching should
be done. The all function which matches repeatedly the
given regular expression behaves similarly.
In addition, we suppose the existence of a marking API.

The mark function marks a given regular expression with
a markid. After matching, users can test if this particular
regular expression was used during the matching. While this
might seem like an unusual feature, it is in fact very similar to
what is already implemented in engines supporting routing
such as Ragel [Adrian Thurston 2017] or most regex-based
lexers. Marks are also compatible with both the eager and
the POSIX semantics. In Section 4.5, we will present some
leads on how to remove the need for this API.

Inhabitants Finally, we assume that it is possible to obtain
an arbitrary inhabitant of a given regular expression. This
operation is straightforward for most regular expression
languages, and can fail only if operations such as lookaround,
intersection or negations are provided.

4 Typed regular expressions
We can now express our typed regular expression matcher as
amodule which takes an untyped regular expressionmatcher
as an argument. We consider the rest of the code presented
in this section as parameterized over a module Re which
answers the signature RE presented in Figure 4.
Typed regular expressions, of type 'a tre are either an

alternative (capturing a sum type), concatenation (a tuple)
or repetition (a list). They can also be an untyped regular ex-
pression, which will capture a string. Finally, a typed regular
expression can be combined with a converter f to change
the type of its capture. A converter, of type ('a, 'b) conv

1 module type RE : sig
2 type re
3

4 val char : char -> re
5 val alt : re list -> re
6 val concat : re list -> re
7 val star : re -> re
8 val group : re -> re
9 val rm_group : re -> re
10 ...
11

12 (* Compilation *)
13 type automaton
14 val compile : re -> automaton
15

16 (* Matching *)
17 type groups
18 val exec :
19 int -> int -> automaton -> string -> groups
20 val all :
21 int -> int -> automaton -> string -> groups list
22 val get : groups -> int -> string
23

24 (* Marking *)
25 type markid
26 val mark : re -> markid * re
27 val test : markid -> groups -> bool
28

29 (* Inhabitant *)
30 val inhabitant : re -> string
31 end

Figure 4. API for untyped regular expressions

1 type _ tre =
2 | Alt : 'a tre * 'b tre -> ( 'a + 'b ) tre
3 | Concat : 'a tre * 'b tre -> ('a * 'b) tre
4 | Star : 'a tre -> ('a list) tre
5 | Untyped : Re.re -> string tre
6 | Conv : ('a, 'b) conv * 'a tre -> 'b tre
7 | Ignore : _ tre -> unit tre
8

9 type ('a, 'b) conv = {
10 a : 'a -> 'b ;
11 b : 'b -> 'a ;
12 }

Figure 5. Definition of typed regular expressions

is simply represented by a pair of functions in each direc-
tion. For convenience, we note 'a + 'b for [‘Left of 'a|‘
Right of 'b]. Finally, we can ignore the result of a regular
expression. The capture is then of type unit.
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1 type _ witness =
2 | WGroup : int -> string witness
3 | WConv : ('a, 'b) conv * 'a witness -> 'b witness
4 | WAlt : markid * 'a witness * 'b witness -> ('a + 'b)

witness
5 | WConcat : 'a witness * 'b witness -> ('a * 'b)

witness
6 | WRep : int * 'a witness * Re.automaton -> 'a list

witness
7 | WIgnore : unit witness

Figure 6. Definition of the witness type

Given these two types, compiling and matching typed
regular expressions can be achieved through the following
steps:

1. Derive an untyped regular expression from the typed
one and compile it to an automaton.

2. Compute a witness which reifies the type of the output
and its relation with the capture groups.

3. Match the strings using the automaton and obtain the
capture groups.

4. Reconstruct the output using the groups and the wit-
ness.

To achieve these steps, two functions are sufficient:
• build of type 'a tre -> Re.re * 'a witnesswhich
builds the untyped regular expression and the witness.

• extract of type 'a witness -> Re.groups -> 'a
which uses a witness to extract the data from the cap-
ture.

We can then provide the typed compilation and match-
ing functions Tyre.compile and Tyre.exec by using the
untyped API:

1 type 'a cre = automaton * 'a witness
2 let compile : 'a tre -> 'a cre = fun tre ->
3 let re, wit = build tre in
4 (rcompile re, wit)
5

6 let exec ((automaton, witness) : 'a cre) s : 'a =
7 extract witness (rexec automaton s)

4.1 Capturing witnesses
Before presenting an implementation of the functions build
and extract, let us detail which pieces of information the
witness will have to contain. The definition of the witness
type is given in Figure 6. First off, the witness type is indexed
by the type of the capture. In particular this means that it
will track alternatives, concatenations and repetitions at the
type level similarly to typed regular expressions. It must also
contain the converter functions in the WConv case.

Capture groups and repetitions The witness must con-
tain the index and the nature of each capture group. Cap-
turing groups mostly correspond to the leaves of the typed
regular expressions using the constructor Untyped. However,
we must consider what happens for Untyped constructors
under repetitions. Indeed, most regular expression engines
only return strings for each capture group, following the
API in Figure 4. If a capture group is under a repetition and
matches multiple times, only the last capture is returned. To
resolve this issue, we record in the witness the regular ex-
pression under the repetition and use a multi-step approach
to re-match the repeated segment.
More concretely, if we want to match the regular ex-

pression "a(b(?<x>[0-9]))*", we start by matching the
simplified regular expression "a(?<rep>(b[0-9])*)". We
identify the range of the repeated segment, we then match
"b(?<x>[0-9])" repeatedly on that range. Naturally, this
incurs a cost proportional to the star height of the regular
expression. Note that this does not imply an exponential com-
plexity of matching in terms of length of the input, unlike
PCREs. For a fixed regular expression, the matching is still
linear in terms of the length of the string if the underlying
untyped matching is linear.

Consequently, the WRep constructor contains the index of
the group which will match the whole repeated substring,
a witness that can extract the captured data and the corre-
sponding compiled regular expression.

Alternatives Thewitnessmust also inform uswhich branch
of an alternative was taken during matching. This is where
the marking API presented in Section 3 come into play. For
each alternative, we record a mark that indicates which
branch of the alternative was used. This can also be used to
encode all the other construction that present a choice such
as options, routing, . . . . The constructor WAlt thus contains a
markid and two witnesses for each branch of the alternative.

4.2 Building the witness
The build function, presented in Figure 7, derives an un-
typed regular expression and a witness from a typed regu-
lar expression. It relies on an internal function, build_at
which takes the current capturing group index, the typed
regular expression, and returns a triplet composed of the
next capturing group index, the witness and the untyped
regular expression. Unusually for OCaml, the type annota-
tion on Line 2 is mandatory due to the use of GADTs. The
universal quantification is made explicit through the use of
the syntax “type a.” This also guarantees that the type of
the regular expression and of the witness correspond. The
Untyped case, on Line 4, proceeds by simply removing all
the internal groups present inside the regular expression,
wrapping the whole thing in a group, to ensure that only
one group is present, and appropriately incrementing the
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1 let rec build_at
2 : type a. int -> a t -> int * a witness * re
3 = fun i tre -> match tre with
4 | Untyped re ->
5 (i+1), WGroup i, Re.group (Re.rm_group re)
6 | Conv (conv, e) ->
7 let i', w, re = build_at i e in
8 i', WConv (conv, w), re
9 | Alt (e1,e2) ->
10 let i', w1, re1 = build_at i e1 in
11 let id1, re1 = Re.mark re1 in
12 let i'', w2, re2 = build_at i' e2 in
13 i'', WAlt (id1, w1, w2), Re.alt [re1; re2]
14 | Concat (e1,e2) ->
15 let i', w1, re1 = build_at i e1 in
16 let i'', w2, re2 = build_at i' e2 in
17 i'', WConcat (w1, w2), Re.concat [re1; re2]
18 | Rep e ->
19 let _, w, re = build_at 1 e in
20 let re_star = Re.group (Re.rep (Re.rm_group re)) in
21 (i+1), WRep (i,w,Re.compile re), re_star
22 | Ignore e ->
23 let _, _, re = build_at 1 e in
24 i, WIgnore, Re.rm_group re
25

26 let build tre = let _, w, re = build_at 1 tre in (w, re)

Figure 7. Implementation of the build function

number of groups. Most of the other cases proceed in simi-
larly straightforward ways. Of particular note is the Alt case,
where the regular expression in the left branch is marked
using Re.mark on Line 11. For the Rep case, note that the
recursive case, on Line 19, starts again at group index 1,
and the resulting group number is ignored. Indeed, since
we will use this regular expression independently, the other
groups do not matter. Finally, for the main build function,
we start with index 1, 0 being usually reserved for the com-
plete matched string.

4.3 Extracting using the witness
After matching, we use the witness to extract information
from the capture groups. Extraction is implemented by a pair
ofmutually recursive functions, extract and extract_list
which are shown in Figure 8. Most of the cases follow di-
rectly from the structure of the witness. The typing ensures
that the type returned by the extraction is correct, including
in the converter case on Line 6. The main case of interest
is the WRep case, which calls the extract_list function.
This function applies the regular expression under the list
repeatedly using Re.all, as described previously.

1 let rec extract
2 : type a. string -> a witness -> groups -> a
3 = fun str w g -> match w with
4 | WGroup i -> Re.get g i
5 | WIgnore -> ()
6 | Conv (w, conv) -> conv.a (extract str w g)
7 | WAlt (i1,w1,w2) ->
8 if Re.marked g i1 then
9 ‘Left (extract str w1 g)
10 else
11 ‘Right (extract str w2 g)
12 | WConcat (e1,e2) ->
13 let v1 = extract str e1 g in
14 let v2 = extract str e2 g in
15 (v1, v2)
16 | WRep (i,we,re) -> extract_list str we re i g
17

18 and extract_list
19 : type a. string -> a witness -> Re.re -> int ->
20 groups -> a list
21 = fun str w re i g ->
22 let f = extract str w in
23 let pos, pos' = Re.offset g i in
24 let len = pos' - pos in
25 List.map f @@ Re.all pos len re original

Figure 8. Implementation of extract

4.4 Unparsing
In addition to traditional parsing, our technique allows us to
easily support unparsing. Unparsing takes a typed regular
expression, a value, and returns a string. Note that this is
slightly different than “flattening” used in the full RE parsing
literature. Indeed, here the value (and the typed regular ex-
pression) does not cover the complete parsetree. Some bits of
the input can be ignored using the *> and <* combinators (or
the Ignore constructor, in our simplified version). However,
thanks to the fact that the language is regular, we can invent
new inhabitants for the missing parts. The unparse function,
shown in Figure 9, can thus be implemented by a recursive
walk over the structure of the typed regular expression. The
function inhabitant used in Line 14 is an extension of the
function Re.inhabitant to typed regular expressions, with
a type _ tre -> string.

4.5 Extensions
4.5.1 Routing
Let us consider n routes each composed of a typed regular
expression ’ak tre and a function of type ’ak -> ’output
for k from 0 to n − 1. To compile this set of routes, we first
build the alternative of each of the associated untyped regular
expressions. We also collect all the witnesses, along with the
associated callbacks. To know which route was matched, we
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1 let rec unparseb
2 : type a . a tre -> Buffer.t -> a -> unit
3 = fun tre b v -> match tre with
4 | Regexp (_, lazy cre) -> begin
5 if Re.test cre v then Buffer.add_string b v
6 else raise Wrong_string
7 end
8 | Conv (tre, conv) -> unparseb tre b (conv.from_ v)
9 | Opt p -> Option.iter (unparseb p b) v
10 | Seq (tre1,tre2) ->
11 let (x1, x2) = v in
12 unparseb tre1 b x1 ; unparseb tre2 b x2
13 | Ignore tre ->
14 Buffer.add_string b (inhabitant tre)
15 | Alt (treL, treR) -> begin match v with
16 | ‘Left x -> unparseb treL b x
17 | ‘Right x -> unparseb treR b x
18 end
19 | Rep tre -> List.iter (unparseb tre b) v
20

21 let unparse : 'a t -> 'a -> string = fun tre v ->
22 let b = Buffer.create 17 in
23 try unparseb tre b; Some (Buffer.contents b)
24 with Wrong_string -> None

Figure 9. Implementation of unparsing

simply mark each of the routes using the marking API. Such
a compilation process is fairly direct and allows the regular
expression engine to efficiently match the total set of routes,
without having to match each route one by one.

4.5.2 Extraction without marks
In Section 4.1 we used marks to track which branches were
taken during matching. Unfortunately, marks are not avail-
able in many regular expression engines, most notably the
native Javascript one. Additionally, emulating marks using
groups is not as easy as it might seem: Let us consider the reg-
ular expression line(?<len>[0-9]*)|(?<empty>) that matches
strings of the format line12, line without any number, or
the empty string. Under the POSIX semantics, while match-
ing the string line, neither of the capture groups will cap-
ture, thus preventing us from detecting which branch was
taken. We need to add yet another extra group around the
complete left part of the alternative. Even then, if both sides
of the alternative are nullable, it is possible that none of the
group matches and we must favor one of the branches.
While this allows us to implement our technique on en-

gines that do not support marks, as is the case in Javascript,
this method forces us to addmany additional groups through-
out the regular expression, thus degrading performance.

4.5.3 Staged extraction
We previously built a capturing witness during compilation
and used this witness to reconstruct the output datatype dur-
ing extraction. Using staged meta-programming, we could
build the extraction code directly and either evaluate it to
extract the captured data or output it and compile it, for
offline usage.
We implemented a prototype following this idea using

MetaOCaml [Kiselyov 2014], an extension of OCaml for
staged meta-programming. MetaOCaml provides a new type
'a code which represents quoted code that evaluates to val-
ues of type 'a, and new quotation syntax for staged code:
.< get .~s i >. represents a piece of staged code while
.~s represents an antiquotation for staged code.

The only required changes in the API is to replace convert-
ers by staged functions. Internally, extract is replaced by
codegen : 'a witness -> groups code -> 'a code
which takes a staged identifier referring to the capture groups
and generates the code doing the extraction.
For instance, the code handling concatenation is shown

below. The final code emitted by extract is very close to
the optimal hand-written extraction code.

1 | Concat (re1,re2) ->
2 let code1 = codegen re1 groups in
3 let code2 = codegen re2 groups in
4 .< (.~code1, .~code2) >.

5 Evaluation
We aim to evaluate our approach in two aspects: an infor-
mal look at Tyre’s ease of use compared to similar libraries
and various benchmarks that measure both the comparative
performances and the overhead cost. We considered two
scenarios: an HTTP parser and an URI parser. Unfortunately,
due to various limitations regarding MetaOCaml and native
code, we were not able to compare our staged version with
the normal Tyre extraction.

5.1 HTTP parsing with parser combinators
The Angstrom library is a high-performance parsing com-
binator library for OCaml inspired by Haskell’s attoparsec.
It claims very high efficiency and was explicitly built for
dealing with network protocols. One of the basic examples
provided by the library is a simplified HTTP parser. Since
such simplified HTTP requests and responses form a regular
language, we converted this parser to Tyre. Angstrom’s API
relies heavily on an applicative API composed of operators
such as *>, <* and lift, making the translation to Tyre
straightforward. The simplified parser for HTTP requests
is shown in Figure 10 and the complete parser is roughly
the same size as the Angstrom one. One major difference be-
tween combinator libraries such as Angstrom and Tyre is the
bi-directional aspect of the latter. In the case of this HTTP
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1 type request = {
2 meth : string ;
3 uri : string ;
4 version : int * int ;
5 headers : (string * string) list ;
6 }
7

8 let lex p = p <* blanks
9 let version =
10 str"HTTP/" *>
11 ((int <* char '.') <&> int)
12

13 let request_first_line =
14 lex meth <&> lex uri <&> version
15

16 let header =
17 token <&> (char ':' *> blanks *> take_till P.eol)
18

19 let request =
20 let to_ (((meth, uri), version), headers) =
21 {meth; uri; version; headers}
22 and of_ {meth; uri; version; headers} =
23 (((meth, uri), version), headers)
24 in
25 conv to_ of_ @@ seq
26 (request_first_line <* eol)
27 (rep (header <* eol) <* eol)

Figure 10. Simplified HTTP request parser using Tyre
Angstrom Tyre Tyre, test-only

28.3 ± 1.8ms 11.6 ± 0.13ms 7.6 ± 0.013ms

Figure 11. Parsing 100 HTTP requests with various parsers

parser, the cost incurred for unparsing is a single additional
function in the final conv call.
To evaluate performances, we measure the time to parse

a list of 100 HTTP requests. We measure Angstrom and
Tyre’s extraction 200 times and show the results in Figure 11.
In addition, we measured the matching part of the Tyre-
based parser, without extraction. This allows to measure the
overhead of Tyre’s extraction compared to directly using
ocaml-re. Tyre is around 2.4 times faster than Angstrom.
Testing using the underlying regular expression engine takes
around 60% of Tyre’s parsing time. This result confirms our
expectations: parsing with regular expressions is much faster
than using a general purpose parsing combinator library like
Angstrom and Tyre’s automated extraction doesn’t introduce
unexpected costs that would compromise its usability for
parsing. We also note that for such a simple extraction (only
simple combination of tuples), Tyre parsing is mostly spent
in the underlying regex engine itself.

The main take-away here is not that Tyre is faster (which
was expected), but that Tyre’s API, which mimics the applica-
tive functor fragment of common parser combinator library,
allows to easily convert parsing code. By doing this con-
version, we gain both performance benefits and additional
features such as unparsing.

5.2 URI parsing
The ocaml-uri library is an OCaml library to parse, print
and manipulate Uniform Resource Identifiers, or URIs, in-
cluding URLs. ocaml-uri uses a regular-expression based
parser using ocaml-re. While the regular expression is com-
plex, it is completely specified by the RFC 3986 [Berners-Lee
et al. 2005] and has numerous test cases. The extraction code,
however, is less specified and is implemented by a fairly del-
icate piece of code with numerous branches that must also
decode the encoded parts of the URI. To simplify this process,
the original parser was in fact broken into two pieces: the au-
thority (often of the form "user@domain.com:8080") was
re-parsed separately. Furthermore, the definition of the reg-
ular expression and the extraction code doing the decoding
were completely disconnected.

We reimplemented the parsing code of ocaml-uri with
Tyre. Our version is feature-par with the original and passes
all the tests. This new implementation brings the decoding
logic and the parsing logic closer, making the code cleaner.
We show the resulting code to decode the authority section
of the URI in Figure 12. Tyre allows us to define utility com-
binators such as encoded and decode which respectively
cast a string into an abstract encoded type and decode said
encoded strings. We can then compose the various pieces of
the parser by following the specification. The (|>) operator
is the reverse function application. Note that the detailed
content of the base regular expressions for user-info and
host are not shown here, as the precise definitions are rather
complex. In the Tyre version of the library, the authority
section is not parsed separately anymore. Since tyre allows
both syntax description and extraction to compose freely, we
can simply inline the authority parser in the larger regular
expression.

We compare the performances of our modified implemen-
tation of ocaml-uri with the original version in Figure 13.
We measured the time taken to parse various URIs with the
original library, our modified version, and finally the time
taken by matching without extraction. This last time serves
as a baseline, as it is common to both versions. Our bench-
mark set is composed of 6 URIs taken from ocaml-uri’s
own testsuite that exercises various parts of the grammar
and are shown in Figure 14. We repeated the measurements
during one minute, and shows the 95% confidence interval.
For this more complex example, we can see that regular

expression matching only occupies 10% to 20% of the parsing
time. Most of the time is taken by the extraction since it
involves some decoding. The Tyre version is always faster
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1 let encoded = conv Pct.cast_encoded Pct.uncast_encoded
2 let decode = conv Pct.decode Pct.encode
3

4 let scheme =
5 pcre "[^:/?#]+" <* char ':'
6 |> encoded |> decode
7

8 let userinfo : Userinfo.t t =
9 pcre Uri_re.Raw.userinfo <* char '@'
10 |> encoded
11 |> conv userinfo_of_encoded encoded_of_userinfo
12

13 let host =
14 pcre Uri_re.Raw.host
15 |> encoded |> decode
16

17 let port =
18 let flatten = conv Option.flatten (fun x -> Some x) in
19 char ':' *> opt pos_int
20 |> opt |> flatten
21

22 let authority =
23 str "//" *> opt userinfo <&> host <&> port

Figure 12. Parsing of the authority section of an URL

Figure 13. Performances of URI parsing

small: http://foo.com
ipv6: http://%5Bdead%3Abeef%3A%3Adead%3A0%3Abeaf%5D

complete: https://user:pass@foo.com:123/a/b/c?foo=1&bar=5#5
query: //domain?f+1=bar&+f2=bar%212
path: http://a/b/c/g;x?y#s
urn: urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Figure 14. Definition of the URIs

than the original version, sometimes marginally so. Part of
this speedup is due to the absence of separate parsing for
the authority section. Indeed, “small” and “ipv6” URIs, which
showcase large speedups, almost only contain the authority
field. On the other hand “path” and “urn”, which showcase
very small speedups, do not contain a significant authority
section. Nevertheless, even in these cases, the Tyre version
still showcase a small speedup. We believe this is due to the
fact that Tyre will extract only the necessary part by using
the branching directly deduced from the regular expressions.
Given that the branching for URIs is quite complex, a manual
version is more likely to extract parts of the string even if
not strictly necessary.

6 Comparison
Regular expressionmatching Substringmatching for reg-
ular expressions is a well explored field. Even though the
classics are well known [Brzozowski 1964; Thompson 1968],
new techniques are still being discovered [Fischer et al. 2010;
Groz and Maneth 2017; Vasiliadis et al. 2011]. Cox [2010]
presents a survey of various efficient approaches. In par-
ticular, significant efforts have been dedicated to improve
both the theoretical and practical performances of substring
matching which resulted in high quality implementation
such as Re2 [Cox 2007], PCRE and Hyperscan [Intel 2018].
One objective of Tyre is precisely to reuse these high quality
implementations and be able to choose between their various
trade-offs, while still enjoying type-safe extraction.

Full regular expression parsing Full regular expression
parsing consists of obtaining the complete parsetree for
a string according to a given regular expressions. Frisch
and Cardelli [2004]; Grathwohl et al. [2014]; Kearns [1991]
present efficient algorithms for the greedy semantics while
Sulzmann and Lu [2014] present an algorithm for POSIX
parsing. All these algorithms are more efficient than the
technique presented here. They however only account for
parsing in the presence of a fairly restricted set of features
and have rarely led to a reusable, optimized and featureful
regular expression library.
In particular, none of these approaches account for lazy-

DFA, regular expression containing both greedy and POSIX
semantics, or the numerous extensions to regular expres-
sions such as lookaround operators. They also aren’t neces-
sarily portable to environments where the engine is already
provided, such as Javascript.

Parser combinators Parser combinators are well known
for providing a convenient API to build parsers. Most parser
combinator libraries allow to express classes of grammar
bigger than regular languages. The parsing technique are
quite varied, from recursive-decent-like techniques which
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can express context-sensitive grammars with arbitrary look-
ahead to PEGs [Ford 2004], thus offering far less efficient
parsing than regular languages.
Many parser combinator libraries offer a monadic API,

extended with applicative operators (<*>, *>, <*, . . . ) and
alternatives (<|>). A recurring topic for monadic APIs is to
leverage their applicative subset, which corresponds to the
“static” portion of the language, for optimisations. In this
context, regex-applicative [Cheplyaka [n. d.]] provides
the applicative subset of the common parser combinator API
and corresponds exactly to regular expression parsing. We
are not aware of any parser combinator libraries for general
grammars that uses this characteristic as an optimisation
technique.

Unlike regex-applicative, Tyre’s typed regular expres-
sions do not form an applicative functor. Indeed, a functor
would give <|> the type 'a tre -> 'a tre -> 'a tre
and fmap the type ('a -> 'b) -> 'a tre -> 'b tre, which
would render unparsing impossible. We were however able
to provide most of the common applicative operators with
the expected type, as shown in the HTTP parsing example.
Another difference between regex-applicative and Tyre
is that the former uses a custom regex parser while Tyre can
delegate matching to a pre-existing one.

Lexer and Parser generators Generators for parser gen-
erators are very commonly used to define lexers, such as lex.
Others, such as Ragel [Adrian Thurston 2017] or Kleenex [Grath-
wohl et al. 2016], are intended for more general purposes.
Most of those, Kleenex excepted, rely on either regular ex-
pression substring matching, or even just matching. Kleenex,
on the other hand, provides efficient streaming parsing for
finite state transducers which allows to write complex string
transformations easily. The main characteristic of genera-
tors is of course their static nature: the regular expression
is available statically and turned into code at compile time.
On the other hand, regular expression engines such as Re2
can compile a regular expression dynamically. This enable
many uses cases such as reading a file, composing a regular
expression, and applying it. Techniques such as lazy-DFA
or JITs that minimize the compilation time are extremely
valuable in these dynamic use-cases. By being parametric
in the underlying engine, Tyre aims to be usable in both
static and dynamic contexts. In particular, our staged version
presented in Section 4.5.3 can both execute the extraction
code, but also emit the generated code in a file and use it
later, potentially enabling further optimizations.

7 Conclusion
Writing a complete, efficient regular expression engine that
supports a rich feature set is a complex task. Furthermore,
combining such rich feature set with full regular expression
parsing is still mostly an open problem. In this paper, we

presented a technique which provides automatic and type-
safe parsing and unparsing for regular expression engines
as long as they provide substring matching. While not as
efficient as full regular-expression parsing, this technique
allows to easily leverage the rich feature set of these engines,
while still enjoying type-safe extraction. In particular, we
showed that our technique can be extended with a staged-
metaprogramming approach compatible with both online
and offline compilation of regular expressions.
We implemented our technique as a convenient and effi-

cient OCaml combinator library, Tyre, along with a syntax
extension that provides a familiar PCRE-like syntax. We eval-
uated the practicality of our library through real use cases.
The Tyre library has been used by external users on various
contexts, ranging from web-programming to log search.

In the future, we aim to diversify the underlying engines
available out of the box. In particular, we would like to be
able to write typed regular expressions that can run either
with online compilation engines like ocaml-re, offline com-
pilation for lexers, or Javascript regular expressions. We also
aim to improve the general performances of Tyre, notably
for repetitions.
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