
Typed Parsing and Unparsing

for Untyped Regular Expression Engines

Gabriel RADANNE

PEPM 2019

Some people, when confronted with a problem, think “I know, I’ll use regular ex-

pressions.”

Now they have two problems.

Jamie Zawinski

2

I want to search my logs to find domain names!

[0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\]
(:[0-9]+)?

It recognizes things like foo.bar:8080.

Now, I want to list domains that made a request on registered ports.

3

I want to search my logs to find domain names!

[0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\]
(:[0-9]+)?

It recognizes things like foo.bar:8080.

Now, I want to list domains that made a request on registered ports.

3

[0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\]
(:[0-9]+)?

I add capture groups

4

([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?

I add capture groups

4

([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?

I add capture groups

And then I write a small program:

result = match(regex,s)
domain = result[1]
port = int(result[3])
if port < 49152:
print(domain)

4

Now, I want to improve my program to also give me scheme and path.

([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?

domain = result[1]
port = int(result[3])

What if I want to differentiate domain names and IP addresses ?

5

Now, I want to improve my program to also give me scheme and path.

(([a-zA-Z]*)://)?
([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?
((/[^/?]+)*)

domain = result[1]
port = int(result[3])

What if I want to differentiate domain names and IP addresses ?

5

Now, I want to improve my program to also give me scheme and path.

(([a-zA-Z]*)://)?
([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?
((/[^/?]+)*)

scheme = result[2]
domain = result[3]
port = int(result[5])
path = result[7].split("/")

What if I want to differentiate domain names and IP addresses ?

5

Now, I want to improve my program to also give me scheme and path.

(([a-zA-Z]*)://)?
([0-9a-zA-Z.-]+|\[[0-9A-Fa-f:.]+\])
(:([0-9]+))?
((/[^/?]+)*)

scheme = result[2]
domain = result[3]
port = int(result[5])
path = result[7].split("/")

What if I want to differentiate domain names and IP addresses ?

5

What have we learned?

Pros:

• Composition of recognition is good(-ish)

• Linear time (mostly, . . .)

Cons:

• Composition of extraction is completely broken

• Extracting things under star/alternative is painful

6

Common answer:

Meh, Just use parser combinators
Pros:

• Everything composes

• Processing/extraction integrated into the parser (Applicative,. . .)

• Star/Alternative works well (Alternative,. . .)

Cons:

• It’s slow (not linear time)

7

Common answer:

Meh, Just use parser combinators
Pros:

• Everything composes

• Processing/extraction integrated into the parser (Applicative,. . .)

• Star/Alternative works well (Alternative,. . .)

Cons:

• It’s slow (not linear time)

7

Common answer:

Meh, Just use parser combinators
Pros:

• Everything composes

• Processing/extraction integrated into the parser (Applicative,. . .)

• Star/Alternative works well (Alternative,. . .)

Cons:

• It’s slow (not linear time)

7

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries, lookaround operators?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries, lookaround operators, streaming?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries, lookaround operators, streaming,

online/lazy determinization?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries, lookaround operators, streaming,

online/lazy determinization, . . . ?

• Please let me use Re2 instead. /

8

Another answer:

Just use full regex parsing algorithms
Pros:

• Everything composes

• Typed interpretation of regular expressions with ADTs

• Linear time

Cons:

• Can I use Greedy and POSIX semantics?

• Does it support charsets, word boundaries, lookaround operators, streaming,

online/lazy determinization, . . . ?

• Please let me use Re2 instead. /

8

Idea:

Retrofit regex parsing on existing engine

9

Tyre

9

A familiar API

type ’a t (* A regular expression that captures ’a *)

(** Applicative-like *)
val conv : (’a -> ’b) -> (’b -> ’a) -> ’a t -> ’b t
val (*>) : _ t -> ’a t -> ’a t
val (<&>) : ’a t -> ’b t -> (’a * ’b) t

(* Alternative-like *)
val (<|>) : ’a t -> ’b t -> [‘Left of ’a | ‘Right of ’b] t
val list : ’a t -> ’a list t
val opt : ’a t -> ’a option t

10

A familiar API

type ’a t

(* Base element *)
val regex : regex -> string t

let int : int t =
conv string_of_int int_of_string (regex "[0-9]+")

11

A familiar API

type ’a t

(* Base element *)
val regex : regex -> string t

let int : int t =
conv string_of_int int_of_string (regex "[0-9]+")

11

Revisiting URLs

let schm: string t = regex "[^/:?#]*" <* str "://"
let host: string t = regex "[^/:?#]+"
let port: int option t = opt (char ’:’ *> int)
let path: string list t = list (char ’/’ *> regex "[^/?#]*")

let url : url t =
conv to_url from_url (schm <&> host <&> port <&> path)

12

Revisiting URLs

let schm: string t = regex "[^/:?#]*" <* str "://"
let host: string t = regex "[^/:?#]+"
let port: int option t = opt (char ’:’ *> int)
let path: string list t = list (char ’/’ *> regex "[^/?#]*")

let url : url t =
conv to_url from_url (schm <&> host <&> port <&> path)

12

Revisiting URLs – syntax extension

let schm: string t = [%tyre "(?<schm>:[^/:?#]*)://"]
let host: string t = [%tyre "[^/:?#]+"]
let port: int option t = [%tyre "(:(?&int))?"]
let path: string list t = [%tyre "(/(?<p>:[^/?#]*))*"]

let url =
[%tyre "(?&schm)(?&host)(?&port)(?&path)"]

13

Using typed regular expressions

let c = compile url
exec c "http://foo.com:80/some/path"
- : (url, url error) result =
Result.Ok { scheme = "http" ; host = "foo.com";

port = Some 80 ; path = ["some"; "path"] }

let myurl = { scheme = "ftp" ; host = "myserver.net" ;
port = None ; path = []}

eval url myurl ;;
- : string = "ftp://myserver.net"

14

Using typed regular expressions

let c = compile url
exec c "http://foo.com:80/some/path"
- : (url, url error) result =
Result.Ok { scheme = "http" ; host = "foo.com";

port = Some 80 ; path = ["some"; "path"] }

let myurl = { scheme = "ftp" ; host = "myserver.net" ;
port = None ; path = []}

eval url myurl ;;
- : string = "ftp://myserver.net"

14

Using typed regular expressions

let c = compile url
exec c "http://foo.com:80/some/path"
- : (url, url error) result =
Result.Ok { scheme = "http" ; host = "foo.com";

port = Some 80 ; path = ["some"; "path"] }

let myurl = { scheme = "ftp" ; host = "myserver.net" ;
port = None ; path = []}

eval url myurl ;;
- : string = "ftp://myserver.net"

14

Using typed regular expressions

let c = compile url
exec c "http://foo.com:80/some/path"
- : (url, url error) result =
Result.Ok { scheme = "http" ; host = "foo.com";

port = Some 80 ; path = ["some"; "path"] }

let myurl = { scheme = "ftp" ; host = "myserver.net" ;
port = None ; path = []}

eval url myurl ;;
- : string = "ftp://myserver.net"

14

Using typed regular expressions

let c = compile url
exec c "http://foo.com:80/some/path"
- : (url, url error) result =
Result.Ok { scheme = "http" ; host = "foo.com";

port = Some 80 ; path = ["some"; "path"] }

let myurl = { scheme = "ftp" ; host = "myserver.net" ;
port = None ; path = []}

eval url myurl ;;
- : string = "ftp://myserver.net"

14

Internals

14

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int

from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

??

snd

to_int

??

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int
from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

if 1
then Some _

else None

snd

to_int

group 3

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int
from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

if 1
then Some _

else None

snd

to_int

group 3

For Extraction

Send to Regex Engine

Extract

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int
from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

if 1
then Some _

else None

snd

to_int

group 3

For Extraction

Send to Regex Engine

Extract

1: Some "..."
2: Some ":"
3: Some "12"

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int
from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

if 1
then Some _

else None

snd

to_int

group 3

For Extraction

Send to Regex EngineExtract

1: Some "..."
2: Some ":"
3: Some "12"

15

Internals

opt

*>

char ’:’ignore

regex

":"

int
to_int
from_int

regex

"[0-9]+"

(_)?

·

(_)

":"

(_)

"[0-9]+"

For Matching

1

2 3

if 1
then Some _

else None

snd

to_int

group 3

For Extraction

Send to Regex EngineExtract

1: Some "..."
2: Some ":"
3: Some "12"

Some 12

15

Two thorny issues remains:

• Alternatives

• Repetitions

16

Two thorny issues remains:

• Alternatives

⇒: Similar to option: abuse groups for branching

• Repetitions

16

Repetitions

Let’s take a concrete example:

let r = str "numbers:" *> rep (int <* char ’;’)
let cr = compile r
exec cr "numbers:1;2;345;6;"
> Result.Ok [1; 2; 345; 6]

17

Repetitions

rep

a

(_*)

ra

i

ra

??

fa

18

Repetitions

rep

a

(_*)

ra

i

ra

??

fa

18

Repetitions

rep

a

(_*)

ra

i

ra

let pos,len =
position i

in
List.map fa
(all ~pos ~len ra s)

fa

18

Repetitions

• Pay a linear cost (proportional to the star height)

• Only problematic in the typed part! ...(regex "abc+")... is fine.

• Top-level repetitions are not costly

19

Experimentations

19

Experimentations:

• Implemented a spec-compliant URI parser.

⇒ faster and safer than original ocaml-uri, passes all the tests

• Primitive HTTP parser

⇒ 2.5 times faster than the equivalent parser-combinator implementation

• Various uses in the wild

See the paper for details

20

Conclusion

20

Take away

• Regular expression parsing doesn’t really compose

⇒ You have to enrich them with extraction info

• Implementing a fast and featureful regex engine is a non-trivial undertaking

⇒ Try to reuse the existing work as much as possible

• Parsing combinators provide a nice API, but sometimes you want a tagged

representation

• Syntax extensions really help adoption (see the paper)

21

Conclusion

I presented a method to have typed regex parsing on top of untyped engines

• Work on top of many engines

⇒ Can be used with various regex languages (but not backrefences . . .)

• Various optimisations in the paper:

⇒ Use marks to avoid groups in alternatives

⇒ Extraction code can be staged too!

• Implement alternatives and repetitions

• Not perfect, but sufficient in practice

Implemented in OCaml and distributed:

• Library: tyre in opam

• Syntax extension: ppx_tyre in opam

22

Conclusion

I presented a method to have typed regex parsing on top of untyped engines

• Work on top of many engines

⇒ Can be used with various regex languages (but not backrefences . . .)

• Various optimisations in the paper:

⇒ Use marks to avoid groups in alternatives

⇒ Extraction code can be staged too!

• Implement alternatives and repetitions

• Not perfect, but sufficient in practice

Implemented in OCaml and distributed:

• Library: tyre in opam

• Syntax extension: ppx_tyre in opam

22

Future Work and questions

• Better scheme for repetitions ?

• Make sure exactly which extensions of regexes are compatible.

• Compatibility with the Javascript Regex API . . .

23

Questions?

23

Using typed regular expressions

type ’a re
(** A compiled typed regular expression of type ’a *)

val compile : ’a t -> ’a re
val exec : ’a re -> string -> (’a, error) result

(* Unparsing/Printing a value using a regex *)
val eval : ’a t -> ’a -> string

(* Routing: pattern matching for regexs *)
val route : ’a route list -> ’a re

24

Using typed regular expressions

type ’a re
(** A compiled typed regular expression of type ’a *)

val compile : ’a t -> ’a re
val exec : ’a re -> string -> (’a, error) result

(* Unparsing/Printing a value using a regex *)
val eval : ’a t -> ’a -> string

(* Routing: pattern matching for regexs *)
val route : ’a route list -> ’a re

24

Using typed regular expressions

type ’a re
(** A compiled typed regular expression of type ’a *)

val compile : ’a t -> ’a re
val exec : ’a re -> string -> (’a, error) result

(* Unparsing/Printing a value using a regex *)
val eval : ’a t -> ’a -> string

(* Routing: pattern matching for regexs *)
val route : ’a route list -> ’a re

24

Alternatives

<|>

a b

|

(_)

ra

(_)

rb

1 i+1

if 1 then ‘Left a
else if i+1 then ‘Right b
else ??

fa fb

25

Alternatives

<|>

a b

|

(_)

ra

(_)

rb

1 i+1

if 1 then ‘Left a
else if i+1 then ‘Right b
else ‘Left a

fa fb

25

Alternatives

• Need to insert many additional groups

• Can be improved by using marks (see the paper)

26

Comparison with parser combinators

Angstrom Tyre Tyre, test-only

28.3±1.8ms 11.6±0.13ms 7.6±0.013ms

Figure 1: Parsing 100 HTTP requests with various parsers

27

Performances of URI parsing

28

Definition of URIs

small: http://foo.com
ipv6: http://%5Bdead%3Abeef%3A%3Adead%3A0%3Abeaf%5D

complete: https://user:pass@foo.com:123/a/b/c?foo=1&bar=5#5
query: //domain?f+1=bar&+f2=bar%212

path: http://a/b/c/g;x?y#s
urn: urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

29

