Tierless

programming in ML

Gabriel RADANNE

cQ
29 - @
@O

2/39

Server

An HTTP Request
GET /hypertext/WwWW/TheProject.html
HTTP/1.1
Host: info.cern.ch
User-Agent: Firefox/56.0
Accept: text/html
Accept-Language: en
Accept-Encoding: gzip, deflate
Referer: http://info.cern.ch/

Client
G?‘E
@

2/39

World Wide Web

The WorldwideWeb (W3) is a wide-area_hypermedia information retrieval

initiative aiming to give universal access to a large universe of documents.

Everything there is online about W3 is linked directly or indirectly to this
document, including an executive summary of the project, Mailing lists ,
Policy , November's W3 news , Frequently Asked OQuestions .

What's out there?
Pointers to the world's online information, subjects , W3 servers, etc.
Help
on the browser you are using
Software Products
A list of W3 project components and their current state. (e.g. Line
Mode X11 Viola , NeXTStep , Servers , Tools , Mail robot , Library)
Technical
Details of protocols, formats, program internals etc
Bibliography
Paper documentation on W3 and references.
People
A list of some people involved in the project.
History
A summary of the history of the project.
How can I help ?
If you would like to support the web..
Getting code
Getting the code by anonymous FTP, etc.

Se(r\jer
Cli

et
oo
w

2/39

T T MW

amazon

1116 01,644 resuls for"camel plusi”

Showresulisfor | pmEm— Y

Camel Mini Flopsie 8" by Aurora

e et e
[y v,

474 oot

Fedededeie

National Geographic Bactian Camel Plush
Refine by $11% 52508 prime. ok N
otcamay o ieaCe talanbia
L olod Lawrence Camel 8" by Douglas Cudle Toys
it
Wid Repubic Cuddlekins 12 Dromedary Camel
[ttt 1200 eneres Ahnrs
ot o
wiaRT Callie the Camel | 12 Inch Stuffed Animal Plush | By Tiger Tale Toys
= i S —
jrey \« fé)

Bactrian 2 Hump Camel Pounce Pal Plush Stuffed Animal

2/39

4

amazon

1116 019 i o

Show results for

Sce AU3 Deparements

Refine by

T —
e g by

[——

scian ame plus”

%
4
te
&

114

Hansa Bactrian 2 Hump Camel Plush

593 e Hreddrds

$9508 0 vt

Bactrian 2 Hump Camel Pounce Pal Plush Stuffed Animal

109 e Fesedrdrics

$099 (s newoliers

Stuffed Real Bactrian camel Sprawl Series

Elka Australia Camel Bactrian 2 Humps Stuffed Animal Toy 9°/23cm
267 e

Webkinz Virtual Pet Plush - Signature Serles - WILD BACTRIAN CAMEL (12.5 inch)

$30.36 G et Atrsririe

2/39

2048

Join the numbers and get to the 2048 tile! New Game

Server

Client

8 64 32 16 I.
DOM

2/39

@n-dc '
XFramasoft
B|I|U|s| |iE|E

| __ Server

ll
ll
B

Sl
>

Client

"« a = 0 % B O e I .]f;
DOM

2/39

@D+ de
T Framasoft =
B|I|U === ® 2 x, Twel] A

| — R Server
>

Client
. 138
DOM

2/39

uls| |EE=E== 9
* Welcome to my defense!
-« @ = w8

ar

Server
\3

Client Client

I Js
DOM

2/39

uls| |EE=E== 9
* Welcome to my defense!
-« @ = w8

ar

Server
\3

Client
I Js
DOM

L N
Client

2/39

T Framasoft

B|I|U| & |E|E

' Welcome to my defense!

« @ = 0 % & O

== |9|C @)=

X T\trel:I Al [m

Chat

Mobile

Client
v

’

Seamm==”

~
~

L N
Client

Clienf
I JS
DOM

2/39

W

ﬂ Mobile
@D node _ Client

£ d
L4
*
L d
*
L4
M

Server

S

A
Client

Clienf
I Js
DOM

2/39

Server Send

line 1: Welcome to my defense!

Client Expect
line <number>: <text>

ﬂ Mobile
@D node Client
’i
x
Server

y o A
Client Client

I Js
DOM

2/39

Server Send

1,0:Welcome to my defense!

Client Expect
line <number>: <text>

Mobile
@D node _ Client

y o A
Client Client

I Js
DOM

2/39

One program for everything

[Client$ Server J

4/39

One program for everything

[Client$ Server J

Tierless languages

4/39

5
OneWay commumicace

5/39

5
OneWay commumicace

5/39

The OCSIGEN project

fresh air in web programming

SERVER

JS_OF_OCAML

OCAML

6/39

The OCSIGEN project

fresh air in web programming

OCAML

6/39

The OCSIGEN project

fresh air in web programming

OCAML

6/39

The OCSIGEN project

ocsigen

fresh air in web programming

Libraries

SERVER JS OF OCAML

OCAML

6/39

Client and Server declarations

] /N
Client . Server

Location annotations allow to use client and server code in the same
program.

1 typesclient t = ...
2
3 let%server v = ...

The program is statically sliced during compilation.

7139

Building fragments of client code
inside,server code

Fragments of client code can be included inside server code.

i let%server x : int fragment = [%client 1 + 3]

8/39

Building fragments of client code
inside,server code

Fragments of client code can be included inside server code.

i let%server x : int fragment = [%client 1 + 3]
1 let%server y = [("foo", x) ; ("bar", [%client 2])]

8/39

Accessing server values in the client

Injections allow to use server values on the client.

i let%server s : int
2 let%client c : int

nn
!

o°

w

+

[y

9/39

Everything at once

We can combine injections and fragments.

1 let%server x : int fragment = [%client 1 + 3]
> let%client ¢ : int = 3 + ~%x

10/39

Small example — Hint button

button.eliom

let%server hint_button (msg : string) =
button
~a:[a_onclick [%client fun _ -> alert ~%msg] |
[pcdata "Show Hint"]

button.html

<button onclick="...">
Show hint
</button>

11/39

Small example — Hint button

button.eliom

let%server hint_button (msg : string) =
button
~a:[a_onclick [%client fun _ -> alert ~%msg] |
[pcdata "Show Hint"]

button.html

<button onclick="...">
Show hint
</button>

11/39

Before my thesis

The ELIOM “language” was already implemented as an OCAML syntax
extension by numerous contributors:

@ Vincent BALAT @ Grégoire HENRY

@ Benedikt BECKER @ Vasilis PAPAVASILIEOU

@ Pierre CHAMBART @ Jérbme VOUILLON
Problem

The language was starting to get big and there was no formal
definition.

12/39

Before my thesis

The ELIOM “language” was already implemented as an OCAML syntax
extension by numerous contributors:

@ Vincent BALAT @ Grégoire HENRY

@ Benedikt BECKER @ Vasilis PAPAVASILIEOU

@ Pierre CHAMBART @ Jérdbme VOUILLON
Problem

The language was starting to get big and there was no formal
definition.

12/39

My contributions

@ A formalization of the type system, the semantics and the
compilation scheme
@ Improvements on the ELIOM language

o New type system defined as an extension of the OCAML one
@ New module system

@ A new implementation which closely reflects the formalization

13/39

e Formalization
@ Semantics
@ Compilation

e Type system

e Module system

14 /39

Small example

let%server hint_button (msg : string) =

;
2 button

3 ~a:[a_onclick [%client fun _ -> alert ~%msg] |
4 [pcdata "Show hint"]

5

s let%server thebutton = hint_button "Boo!"

15/39

[IS B N

Small example

let%server hint_button (msg : string) =
button
~a:[a_onclick [%client fun _ -> alert ~%msg] |
[pcdata "Show hint"]

let%server thebutton = hint_button "Boo!"

How is that actually executed?

15/39

Example of execution

ELIOM program

let%server x
let%client y
return y

[%client 1 + 3] [:]
3 + ~%X

Client program

O @)

16/39

Example of execution

ELIOM program

let%server x
let%client y
return y

[%client 1 + 3] [:]
3 + ~%X

Client program
let f () =1+ 3 O

16/39

Example of execution

ELIOM program

let%server x
let%client y
return y

=
3 + ~%X

Client program

let f () =1 + 3 O
let r = f ()

16/39

Example of execution

ELIOM program ELIOM environment
letsclient y = 3 + ~%x X—=r
return y

Client program

let f () =1 + 3 O
let r = f ()

16/39

Example of execution

ELIOM program ELIOM environment
letsclient y = 3 + r X—=r
return y

Client program

let f () =1 + 3 O
let r = f ()

16/39

Example of execution

ELIOM program ELIOM environment

T

Client program

let f () =1+ 3
let r ()
let y +r

nn
w —h

16/39

Example of execution

ELIOM program ELIOM environment

C] X+ r

Client program

let f () =1+ 3 O
let r = f ()

lety =3+ r

return y

16/39

Example of execution

ELIOM program

O X > r
Client program Client environment
let f () =1+ 3
let r=f ()
let y =3 +r
return y

16 /39

Example of execution

ELIOM program

C] Xt r

Client program Client environment

let r=f () [fl—>fun()->1+3
lety =3 +r

return y

16/39

Example of execution

ELIOM program

O

Client program

lety=3+r
return y

Client environment

f— fun()->1+3
r—4

16/39

Example of execution

ELIOM program

O

Client program Client environment

f+— fun()->1+3

r—4
y =7

16/39

Example of execution

o

-

ELIOM program

O

Client program

ELIOM environment
Xt=>r

Client environment

f— fun()->1+3
r— 4
y =7

16/39

Example of compilation

ELIOM code

let%server x
let%sclient y
return y

%client 1 + 3]
3 4+ ~%Xx

bind "f0" (fun () -> 1 + 3);

exec ();
let y = 3 + get "i"
return y

Client code

let x = fragment "f0" ()
end ();

inject "i" x;

Server code

17/39

Execution of the compiled code

Server program

O

Lee o S TG S () Server environment

end ();

inject "i" x;

ELIOM program l
let%server x = Queue Injections
%client 1 + 3] [] @)
let%client y = 3 + ~%x

return y

bind "f0" (fun()->1+3);
exec ();

let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

" O

let x = "r g
Server environment

end ();

inject "i

ELIOM program

let%server x = Queue Injections
%client 1 + 3] oy nfQn () O
letsclient y = 3 + ~%x

return y

bind "f0" (fun()->1+3);
exec ();

let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

inject "i" x;

Server environment

ELIOM program

let%server x = Queue Injections
%client 1 + 3] @]

letsclient y = 3 + ~%x

return y

bind "f0" (fun()->1+3);
exec ();

let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

Server environment

ELIOM program

let%server x = Queue Injections
%client 1 + 3] oy nfQn () O

letsclient y = 3 + ~%x _—

return y end

bind "f0" (fun()->1+3);
exec ();

let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

Server environment

ELIOM program

let%server x = Queue Injections
[%;_:lient 1+ 3] NP s nEQ () nin oy wpn

let%sclient y = 3 + ~%x ond

return y en

bind "f0" (fun()->1+3);
exec ();

let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

0 B

ELIOM program

Injections
let%server x Queue j

[%;_:lient 1+ 3] NP s R () nin oy wpn
let%client y = 3 + ~%Xx ond
return y en

O

el ORI = Client environment

exec ();
let y = 3 + get "i"
return y

Client program

18/39

Execution of the compiled code

Server program

@) B

ELIOM program

Queue Injections

let%server x

[sclient 1 + 3] NP s R () nin oy wpn
letsclient y = 3 + ~%x - = 7
return y

exec (); ["f0" — fun()->1+3
let y = 3 + get "i" - -
return y Client environment

Client program

18/39

Execution of the compiled code

Server program

@) P

ELIOM program

let%server x = Queue Injections
[%client 1 + 3] end
let%sclient y = 3 + ~%x
return y
Y
exec (); "fo" +— fun()->1+3
let y = 3 + get "i" WP s a
return y

- Client environment
Client program

18/39

Execution of the compiled code

Server program

@) B

ELIOM program

Injections

let%server x =
[%client 1 + 3]
let%sclient y = 3 + ~%x

return y l
let y = 3 + get "i" "fO" > fun()->1+3
return y rt s 4
Client program Client environment

18/39

Execution of the compiled code

Server program

0 S

ELIOM program

let%server x =
[%client 1 + 3] Wiy npn

letsclient y = 3 + ~%x
return y l /

lety =3 + "r" ‘ Q" > fun()->143

return y npen ey 4

Client program Client environment

18/39

Execution of the compiled code

Server program

@) B

ELIOM program

let%server x =

[%client 1 + 3] Wiy npn
letsclient y = 3 + ~%x
return y

Client program rtea
y =7

Client environment

18/39

Execution of the compiled code

Server program

O S
ELIOM program
let%server x =
[%client 1 + 3] Wiy npn
letsclient y = 3 + ~%x
return y
) Ej "f0" > fun()->1+3
Client program Wy 4

yr—=17

l

Result

18/39

Theorem (Compilation preserves semantics)

Given a slicable program P which reduces to v with a trace 6. Then:

@ The server compilation (P) reduces to the queue & and the
injections { with the trace 6.

@ The client compilation (P),, the queue § and the injections {
reduces to the value v with the trace 6.

@ 0 is equal to the concatenation of 85 and 6.

19/39

Theorem (Compilation preserves semantics)

If converters are well-behaved,
Given a slicable program P which reduces to v with a trace 6. Then:

@ The server compilation (P) 4 reduces to the queue & and the
injections § with the trace 0.

@ The client compilation (P),, the queue & and the injections §
reduces to the value v with the trace 6.

@ 0 is equal to the concatenation of 85 and 6.

19/39

Fg’zation
@ Semantics

@ Compilation

e system
-
e Module system

Type universes

Client and server types are distinct in ELIOM!

1 let%server s : int
> letsclient c : int

21/39

Type universes

Client and server types are distinct in ELIOM!

i let%server s : intg
> letsclient c : int,

Inn
!

o°

wn

+

—

21/39

How to typecheck injections?

@ Client and server types are in distinct universes
@ We send values from the server to the client

We need to specify how to send values! This problem is known as
cross-stage persistency.

1+ 2
cint%s + 1

let%server s : intg
let% c : intg

With the predefined converters:

val%sserver cint : (intg, int;) converter
valsserver cfrag : (’'a fragment, 'a) converter

22/39

How to typecheck injections?

@ Client and server types are in distinct universes
@ We send values from the server to the client

We need to specify how to send values! This problem is known as
cross-stage persistency.

1+ 2
cint%s + 1

let%server s : intg
let%client c : int,

With the predefined converters:

val%server cint : (int;, int;) converter
val%server cfrag : (’'a fragment, 'a) converter

22/39

Semantics of converters

Converters are “functions” that cross the client/server boundaries.

Definition
A converter is said “well-behaved” if it can be decomposed into a
server serialization and a client deserialization function.

type (’'a, 'b) converter = {
serialize: 'a -> serial ;
deserialize: (serial -> 'b) fragment ;

}

23/39

Semantics of converters

Converters are “functions” that cross the client/server boundaries.

Definition
A converter is said “well-behaved” if it can be decomposed into a
server serialization and a client deserialization function.

type%sserver (’'a, 'b[@client]) converter = {
serialize: 'a -> serial ;
deserialize: (serial -> 'b) fragment ;

}

23/39

Theorem (Compilation preserves typing)

Given a well typed program P, then the client and server compilation,
(P), and (P), are also well typed.

Types for the compiled programs can trivially be deduced from the
original ones.

This theorem ensures that the ML parts of ELIOM programs are typed
“like ML".

24/39

szation
@ Semantics

@ Compilation

pe system
@
© Module system

Why modules?

-

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In"Particular, we want:
@A good integration with OCAML
@¥Ability to load libraries at a chosen location
@ Signatures that inform us about locations
@ Separate compilation

= We need a module system that accounts for locations.

26/39

Why modules?

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In particular, we want:
@ A good integration with OCAML
@ Ability to load libraries at a chosen location
@ Signatures that inform us about locations

@ Separate compilation

26 /39

Why modules?

With the ELIOM language thus far, we have location-aware
programming in expressions.

We also want location-aware programming in the large!

In particular, we want:
@ A good integration with OCAML
@ Ability to load libraries at a chosen location
@ Signatures that inform us about locations
@ Separate compilation
= We need a module system that accounts for locations.

26 /39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x
2 let%client a
3 let%server b

— —h -
unN -

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

=- Compilation objects from the OCAML compiler can be reused
directly!

27/39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x
2 let%client a
s let%server b

— —h -
uN -

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

27 /39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

1 let%base f x
2 let%client a
s let%server b

— —h -
uN -

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

= Compilation objects from the OCAML compiler can be reused
directly!

27 /39

Integration with OCAML

On top of client and server, there is also a third location, base, which
is usable everywhere.

i let f x= ...
2 let%client a
s let%server b

— —h
u N

Theorem (Base/ML correspondance)

ELIOM modules, expressions and types on base location correspond
exactly to the ML language.

= Compilation objects from the OCAML compiler can be reused
directly!

27 /39

® N O AW N =

Modules and locations

We can also declare modules on the location of our choice! The
content of the module must be the same than its location.

module%sclient JsMap : sig

typesclient ’a t

valsclient empty : ’a t

valsclient add : 'a t -> string -> 'a -> unit
end

28/39

® N O AW N =

Modules and locations

We can also declare modules on the location of our choice! The
content of the module must be the same than its location.

module%sclient JsMap : sig

type 'a t

val empty : 'a t

val add : 'a t -> string -> 'a -> unit
end

We can even omit annotations inside the module!

28/39

4
2
3
4
5

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

modulesmixed

let f x = ...

let%sclient
let%server
end

let%s X

let% y

let%s X

M

C
S

I n
— —h
U N

struct

0 (G

0 S

1S

(*

*)

29/39

a B W N =

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

modulesmixed M = struct
let f x = ...
let%sclient c = f 2
let%server s = f 5
end

You can then use the content of the module as expected:

let%client x = . M.c ...
let%server y = . M.s ...
let%s X = ... Ms ... (% *)

29/39

a B W N =

Mixed modules

We can also declare “mixed” modules which contain declarations in
different locations.

modulesmixed M = struct
let f x = ...
let%sclient c = f 2
let%server s = f 5
end

You can then use the content of the module as expected:

let%client x . M.c ...

let%server y . M.s ...

But using them in the wrong location is prevented:

let%client x = ... M.s ... (*x X Error! x)

29/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F (X

base «— ~—» base

Functor location \ Argument location \ Result location
base | base | base

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F(X)

server «— ~— server
Functor location \ Argument location \ Result location
base base base
server server server

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F (X

server ~— ~——— base
Functor location Argument location \ Result location
base base base
server server server
server base ?

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F (X

server ~— ~——— base
Functor location Argument location \ Result location
base base base
server server server
server base server

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F(X)

base — ~—— server
Functor location Argument location \ Result location
base base base
server server server
server base server
base server ?

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F(X)

base — ~—— server
Functor location Argument location \ Result location
base base base
server server server
server base server
base server server

30/39

What about locations and Functors?

The location of the result of the functor depends on the location of the
functor and its argument.

F(X)

base — ~—— server
Functor location Argument location \ Result location
base base base
server server server
server base server
base server server

= We need a mechanism to modify locations in signatures.

30/39

Polymorphism to the rescue

Consider this function application:

(f x)
oart \int

We instantiate f to int — int before typechecking the function

application.
We can do something similar for locations and functors.

31/39

Specialization

Consider this function application:

F(X)

base J \> server

We “specialize” F to the current location before typechecking the
functor application.
We only have one “location variable”: base

32/39

Specialization

Consider this function application:

F(X)
server 4*// \\\\—> server

We “specialize” F to the current location before typechecking the
functor application.
We only have one “location variable”: base

32/39

Specialization — details

sig

type%sbase t

valxbhase x : t ;
end

functor(M:S)T —

1 sig

2 type%client t

3 valsclient x : t
4 end

functor(M:[S|)|T|

33/39

Mixed functors

We also have (limited) supports for mixed functors!

module type COMPARABLE = sig

type t
val compare : t -> t -> int
end
module%smixed MixedMap (Key : COMPARABLE) = struct
module M = Map.Make(Key)
type%server (’'a, 'b) table = {
srv : 'a M.t ;
cli : 'b M.t fragment ;
}
let%server add id v tbl = ...
end

34 /39

Mixed functors vs. Specialization

Mixed functors are more difficult:

module type S = sig
type t
end

modulesmixed F (A : S) = struct
type%sserver bilocated = {
srv : A.t ;
cli : A.t fragment ;

¥

end

The body of a mixed functor can depend on a base declaration on both
side.

= Analogous to forall quantification in function arguments.

= We can’t specialize the argument of a mixed functor!

35/39

Specialization — Mixed modules

1 sig

2 type%base t

s valsclient x : int
4 valsserver y : t

5 end

functoryyes(M:S)T

1 sig
> type%client t

—y 3 valsclient x : int
4 end

— functormyes(M:S)|T]

36/39

Using mixed functors

Replicated Shared data-structures
1 module Cache (Key : T) = struct

module M = Map.Make(Key)
type%sshared (’'a, 'b) table =
('a M.t, 'b M.t) Shared.t

2
3
4
5
6
7 include%client M
8

9

let%server add id v tbl =
10 [%client M.add ~%id ~%v ~%tbl];

11 M.add id v.srv tbl.srv

13 let%server find id tbl =

14 { srv = M.find id tbl ;

15 cli = [%client M.find ~%id ~%tbl]
16 }

17

18 (*x ... %)

19 end

37/39

Conclusion

| presented my work on ELIOM, an extension of OCAML for tierless
Web programming. During my thesis, | worked on:
@ A formalization of ELIOM as an extension of OCAML.
e Ensures correct communication
o Slice tierless programs statically
o Efficient execution
@ New features:

@ A new typesystem featuring converters
@ A location-aware module systems

@ A new implementation:

e Compiler:
https://github.com/ocsigen/ocaml-eliom
e Runtime: https://github.com/ocsigen/eliomlang

38/39

https://github.com/ocsigen/ocaml-eliom
https://github.com/ocsigen/eliomlang

Questions ?

o o~ W N =

Why functor and locations ?

Imagine we want dictionaries where keys are JAVASCRIPT strings.

Application of a base functor to a client module

module%sclient JsString = struct
type%client t = Js.string
let%client compare = Js.compare_string
end

module%client JsMap = Map.Make(JsString)

Map .Make comes from the OCAML standard library, it's on base!

1/18

e Using converters: RPC

Using converters for fun and profit

Remote Procedure Call (or RPC) is the action of a client calling the
server without loading a new page and potentially getting a value back.

. T
Client. ~ Server

~ -
-~ -
et mmm="

3/18

N

Remote Procedure Calls

A simplified RPC API:

rpc.eliomi

type%server ('i,’o) t
type%client (’'i,’o) t =

i->"0

val%server create : ('i -> 'o0)

-> (1,

'o) t

4/18

N

EN A S

Remote Procedure Calls

A simplified RPC API:

rpc.eliomi

type%server ('i,’'o) t
type%client (’'i,'o) t = 'i ->

’

(o]

valsserver create : (’'i -> ‘o) -> ('i, 'o0) t

An example using Rpc

let%server plusl : (int, int) Rpc.t =
Rpc.create (fun x -> x + 1)

let%sclient f x = ~%plusl x + 1

4/18

Implementing RPC with converters

1 type%server ('i,’'o) t = {
2 url : string ;
3 handler: 'i ->

’

[

s type%client (’'i, 'o) t i -> "0
7

s let%server serialize t = serialize_string t.url
9 let%client deserialize x =

10 let url = deserialize_string x in

11 fun i -> XmlHttpRequest.get url i

12

1z let conv = {

14 serialize = serialize ;

15 deserialize = [%client deserialize] ;

16 }

17

¢ let%server create handler =

19 let url = "/rpc/" ~ generate_new_id () in

20 serve url handler ;

21 { url ; handler }

5/18

Widget + Rpc

We can now use counter and Rpc together!

let%server save_counter_rpc : (int, unit) Rpc.t =
Rpc.create save_counter

let%sserver widget_with_save : Html.element =

let f = [%client ~%save_counter_rpc] in
counter f

6/18

© Implementation
@ Converters

Compilation

.cmi Slicing Regular OCAML toolchain

1

1

! OCSAe“;\L’iST—{.server.{cmo,cmx}]

Cetonpiosies[Eoe 1 T
Typing [Typed AST 1 I

! Client JAVASCRIPT

' OCAML AST . . program

JS_OF_OCAML
toolchain

@ For each .eliomfile:
e One .cmi
e Two .cm[ox]
We change the magic of . Cmis that comes from .eliom files.
@ cmi lookup is a more complicated:

e Two new options: -client-I and -server-I
e Practical hack: Special handling for . client.cmi and
.server.cmi files.

8/18

Slicing

@ To track the current side:
o One global references (just like levels. . .)
e Hacks to propagate sides inside exceptions (for error messages)
@ Slicing at the typedtree level
Manipulating typedtrees is very difficult, so we produce two
parsetrees, and retype client and server independently.

9/18

N o g A W D=

Internal representation

Prime directive of the implementation:

“Thou shall not change data structures”

@ .cCmi files are compatible. We only add extra attributes.
@ Tooling works.
@ We still change the magic number.

ident.ml
type t = { stamp: int; name: string; mutable flags: int }

let global_flag =1

let predef_exn_flag = 2
4
8

let client_flag
let server_flag

10/18

An implementation for converters

A signature for converters

module type CONV = sig
type%sserver t
type%client t
val%server serialize : t -> serial
valsclient deserialize : serial -> t
end

implicit%mixed String : CONV
with type%server t = string and type%client t = string

implicit%mixed Fragment {M : sig type%client t end} : CONV
with type%server t = M.t fragment
and type%client t = M.t

val%sclient (~%) : {C : CONV} -> C.t(xserverx) -> C.t(*xclientx)

@ Uses modular implicits

@ Leverage mixed functors

11/18

)
e Umonverters: RPC

mplementation
Converters

e Bibliography

a A W N =

Tierless languages — HOP

button.js

function hint_button (msg)
<button onclick= ~{alert () } >
Show hint
</button>
}

No static typing!

13/18

1

Tierless languages — UR/WEB

button.ur

fun hint_button msg =
return <xml>
<button onclick= {fn _ => alert msg} >
Show hint
</button>
</xml>

button.urs
val hint_button : string -> page

@ Location information is not syntactic

@ No separate compilation

14/18

Tierless languages — ELIOM

button.eliom

let%server hint_button msg =
button

~a:[a_onclick [%client fun _ -> alert Z&msg]]
[pcdata "Show hint"]

button.eliomi

val%server hint_button : string -> Html.element

@ Static slicing during compilation
@ Efficient execution

@ Extension of OCAML, Part of the OCSIGEN project

15/18

Tierless languages — ML5

button.ml5

fun hint_button msg =
let val m = from server get msg in
[<button onclick="[say alert m]">
Show hint
</button>]

button.mli5 — Not actually writable!

val hint_button : string -> html @ server

@ Location directly inside the types.
@ Support an arbitrary number of locations.
@ No module system!

@ No separate compilation!

16/18

)
e Umonverters: RPC

mplementation
Converters

@ Bibliography

ELIOM bibliography

Gabriel Radanne and Jéréme Vouillon and Vincent Balat
ELIOM: A core ML language for Tierless Web programming
https://hal.archives-ouvertes.fr/hal-01349774
APLAS 2016

Gabriel Radanne and Vasilis Papavasileiou and Jéréme Vouillon
and Vincent Balat

ELIOoM: tierless Web programming from the ground up
https://hal.archives-ouvertes.fr/hal-01407898
IFL 2016

Gabriel Radanne and Jérome Vouillon
Tierless Modules
https://hal.archives-ouvertes.fr/hal-01485362

18/18

https://hal.archives-ouvertes.fr/hal-01349774
https://hal.archives-ouvertes.fr/hal-01407898
https://hal.archives-ouvertes.fr/hal-01485362

	Formalization
	Semantics
	Compilation

	Type system
	Module system
	Appendix
	Using converters: RPC
	Implementation
	Converters

	Comparison
	Bibliography

