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Abstract ELIOM is a dialect of OCAML for Web programming in which
server and client pieces of code can be mixed in the same file using syntactic
annotations. This allows to build a whole application as a single distributed
program, in which it is possible to define in a composable way reusable
widgets with both server and client behaviors.

ELIOM is type-safe, as it ensures that communications are well-behaved
through novel language constructs that match the specificity of Web pro-
gramming. ELIOM is also efficient, it provides static slicing which sepa-
rates client and server parts at compile time and avoids back-and-forth
communications between the client and the server. Finally, ELIOM sup-
ports modularity and encapsulation thanks to an extension of the OCAML
module system featuring tierless annotations that specify whether some
definitions should be on the server, on the client, or both.

This thesis presents the design, the formalization and the implementa-
tion of the ELIOM language.



Résumé ELIOM est un dialecte d’OCAML pour la programmation Web
qui permet, & l'aide d’annotations syntaxiques, de déclarer code client et
code serveur dans un méme fichier. Ceci permet de construire une appli-
cation compléte comme un unique programme distribué dans lequel il est
possible de définir des widgets aisément composables avec des comporte-
ments a la fois client et serveur.

ELioM assure un bon comportement des communications griace a un
systéme de type et de nouvelles constructions adaptés a la programmation
Web. De plus, ELIOM est efficace : un découpage statique sépare les parties
client et serveur durant la compilation et évite de trop nombreuses commu-
nications entre le client et le serveur. Enfin, ELIOM supporte la modularité
et I'encapsulation grace a une extension du systéme de module d’OCAML
permettant 'ajout d’annotations indiquant si une définition est présente
sur le serveur, le client, ou les deux.

Cette thése présente la conception, la formalisation et I'implémention du
langage ELIOM.
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1 Introduction

At the beginning, there was nothing. Suddenly, a burst of light, informa-
tion and heated discussions: the Internet was born. And for a time, it
was enough: Plain text information was exchanged between researchers,
computers had 10Mb of RAM and there was no time for frivolous graphical
Web pages. In 1989, Tim Berners-Lee disagreed and created the Encyclo-
pedia Of Cats. To make his masterpiece accessible to everyone, he also
created the World Wide Web: each page of the encyclopedia was accessed
using the HyperText Transfer Protocol (HTTP). Pages were written us-
ing the HyperText Markup Language (HTML) and viewed through a Web
browser. Related Web pages could be accessed by using Hyperlinks. Web
pages could be easily published on the Internet using a Web server. This
initiative was so successful that the World Wide Web now counts several
billions of Web pages and consolidated cats as the dominant species on
Earth.

Early websites such as Tim Berners-Lee’s encyclopedia were static: the
Web pages were written by hand and didn’t contain any form of dynamic
content. Quickly, people wrote programs to generate Web pages dynami-
cally. In this case, pages are created when the user tries to access them.
The programming of Web pages, or Web programming, has been done us-
ing a wide array of methods: CGI scripts, dedicated languages such as
PHP, but also more generic languages using Web libraries such as Java,
C# or Ruby. In all these cases, the idea is the same: a program written
in the language in question receives a request from a client, usually a Web
browser, and answers it by generating an HTML Web page. The Web
page is then sent back to the client. This form of server-side dynamic web-
site was embraced by early dedicated Web programming languages such as
PHP (1994) and led to the creation of many popular “Web applications”
such as Web search engines (1993), Web forums (around 1994'), Wikis

! Although grumpy old-timer will say that Usenet and BBS did it all before.



World Wide Web

The WorldWideWeb (W3) is a wide-area_hypermedia information retrieval
initiative aiming to give universal access to a large universe of documents.

Everything there is online about W3 is linked directly or indirectly to this
document, including an executive summary of the project, Mailing lists ,
Policy , November's W3 news , Frequently Asked Questions .

What's out there?
Pointers to the world's online information, subjects , W3 servers, etc.
Help
on the browser you are using
Software Products
A list of W3 project components and their current state. (e.g. Line
Mode ,X11 Viola , NeXTStep , Servers , Tools , Mail robot , Library )
Technical
Details of protocols, formats, program internals etc
Bibliography
Paper documentation on W3 and references.
People
A list of some people involved in the project.
History
A summary of the history of the project.

How can [ help ?
If you would like to support the web..

Getting code
Getting the code by anonymous FTP , etc.

Figure 1.1: Tim Berners-Lee’s first website (http://info.cern.ch/) as
seen on a modern Web browser. A line-browser simulator is
also available, for a more vintage experience.


http://info.cern.ch/

(1995), etc. Many modern popular websites still mostly rely on this form
of Web programming, for example Wikipedia and Google search.

An important limitation of these websites is that their dynamic behav-
ior is limited to the server. Once the Web page is generated and sent to
the client, it doesn’t change until the client requested a new page. To
obtain a more dynamic behavior, it was necessary to run programs inside
the user’s Web browser. Around 1995, multiple solutions for client-side
scripting were developed: Java applets, Flash, and JAVASCRIPT. Numer-
ous websites took advantage of these new capabilities to create interactive
experiences available directly in the browser. In particular, Flash and Java
allowed the developments of many browser-based games but also more se-
rious applications such as interactive Web maps, music streaming websites,
etc.

The combination of both server-side dynamic Web page generation and
client-side scripting expanded the capability of websites and allowed to
create rich Web applications that rival traditional desktop applications.
This paved the way for many modern Web sites such as email clients,
browser-based chats, collaborative text editors and more complex websites
such as Facebook.

Unfortunately, this situation didn’t come without some complexity. Con-
sider the composition of an email in a Web client such as Gmail: While you
type your message, a JAVASCRIPT program provides a rich text editor with
bold, italic and emojis. The rich text is rendered in your browser using
HTML for the content and CSS for the appearance. When you hit the send
button, a dynamic AJAX request, which does not load a new page Web,
sends a message containing your email to Google servers. On these servers,
a Java program will store the content of the email in a database and send it
to the desired recipient. This single task used two programming languages
(JAVASCRIPT and Java), at least two description languages (HTML and
CSS), all of it spread over two code bases and several distinct communica-
tion protocols. While Web applications grew more and more complex, with
some subtle interplay of client and server behaviors and very large website
with millions of line of code, the way we write Web application stayed sim-
ilar: a client program, usually called “the frontend”, handles the interactive
part and communicates, usually through loosely structured text messages,
to a server program called “the backend”. These two programs usually do
not share code, not even the definition of the messages communicated, and



are usually written by different teams in different programming languages,
despite the fact that features used by users usually span client and server
side indiscriminately.

1.1 On Web programming languages

The core of this issue is, of course, programming languages themselves.
While the design of early Web programming languages might have been
adapted to how the Web was used at the time, this is not the case any-
more. We shall now explore some of the issues prevalent with existing Web
languages.

1.1.1 The client-server dichotomy

Websites are usually split in two parts, also called “tiers”: a backend that
runs on a Web server and a frontend that runs in a browser. Hence, Web
programmers must deal with communications between the backend and the
frontend. These communications are often static: the backend generates
(dynamically or not) a Web page associated with its frontend code and
sends it to the browser, which then shows and executes it. Already with
this simple scheme, problems can arise: the backend and the frontend
should agree about the type and the shape of the generated Web page.
For example, if the JAVASCRIPT program tries to find the HT ML element
named “user”, the backend must have generated it; if the client program is
generated dynamically, it should be correct; and so on.

Communications between frontend and backend can also be more com-
plex. Consider the email client example given above: the request to send
an email from the client to the server is dynamic and does not generate
a new Web page. Communications can be done arbitrarily between client
and server through various protocols (AJAXs, Web sockets, Comet, ... ).
In all these cases, the frontend and the backend must agree on which kind
of data is sent. If the backend sends potatoes, the frontend should not
expect tomatoes. All these guarantees are difficult to provide statically in
today’s Web programming languages and are usually enforced manually
by the programmer. This is both time-consuming and error-prone.

This separation of Web applications as separate client and server pro-
grams is also problematic from a modularity point of view. Code must



now be organized according to where it should run, and not what it does.
Indeed, client and server functions can not be mixed arbitrarily, they can
not even be in the same filel While this poses significant constraints on
how a Web application is organized, it also severely restricts encapsulation.
Internal details regarding communications must be accessible to the other
side of the application, which often involves exposing them as a protocol to
the whole application thus preventing the construction of good abstraction
boundaries around individual libraries.

1.1.2 Tierless programming languages

Tierless Web programming languages aim to solve these issues by allowing
programmers to build dynamic Web pages in a composable way. They
allow programmers to define on the server functions that create fragments
of a Web page together with their associated client-side behavior. This is
done by allowing to freely intersperse client and server expressions with
seamless communication in a unique programming language. A tierless
program is then sliced in two: a part which runs on the server and a part
which is compiled to JAVASCRIPT and runs on the client. This slicing can
be done either dynamically, by generating JAVASCRIPT code at runtime, or
statically, by cutting the program in two during compilation. Such tierless
languages can also leverage both functional programming and static typing.
Functional programming provides increased expressiveness and flexibility
while static typing gives strong guarantees about client-server separation,
in particular ensuring that communications are consistent across tiers.

1.1.3 Functional programming

Functional programming languages place the function at the center of the
art of programming. Such languages allow to manipulate functions as first
class values. More concretely, they offer the programmer the ability to
create and manipulate functions seamlessly, allowing functions to return
or take as argument other functions and enabling functions to be created,
composed, stored, copied, etc, in arbitrary manners. Functional program-
ming languages also favor immutable values: values that can not change
during the lifetime of the program. To provide new information, new values
must be created. Functional programming and immutable data-structures



have been proven to provide great benefits in term of expressivity, safety
and the ability to create extremely powerful abstractions for a wide va-
riety of use cases as described most elegantly in the seminal essay “Why
Functional Programming Matters” by Hughes [1989)].

Functional programming was first introduced with the Lisp language by
McCarthy [1960]. Since then, numerous languages provided support for
functional programming: Scheme, OCAML, Haskell, Scala, but also more
recently Swift and even Java and C++. Notably, JAVASCRIPT, the lan-
guage of choice for frontend Web programming, provides support for func-
tional programming which was leveraged to great effect in a large number
of libraries such as Immutable or Reactjs. In a client-server context, func-
tional programming was also used as a tool to structure the control flow
across client-server boundaries [Balat, 2013, Queinnec, 2003, 2004, 2000].

Of particular interest is the ML language. ML, short for Meta Language
[Milner, 1978|, aimed to provide a new statically-typed functional program-
ming language tailored for writing theorem provers. This language turned
out to be very powerful and useful for a lot more than theorem proving.
It inspired numerous languages which now form the larger “ML family”.
Some of its direct descendants, such as SML and OCAML, even enjoy large
usage today. The main idea common to the numerous members of the ML
family is to provide functional, sometimes impure, programming constructs
along with a very rich static type system with type inference.

1.1.4 Static type systems

Type systems are an essential component of programming languages. They
allow to label each element of the language by its “type” in order to ensure
that it is used properly. This can be done dynamically at runtime, stat-
ically during a preliminary typechecking phase at compilation, or a mix
of both. The choice between dynamically and statically typed languages
is a long standing and very heated debate among programmers and nu-
merous essays on the topic can be found online. In the context of this
thesis, we will mostly consider the use of statically typed languages as the
programming tool of choice. One reason is simply a strong preference from
the author of this thesis. More objectively, static typing has been used to
great effect in numerous contexts both to prevent bugs, but also to guide
and inform the design of programs. Static typing can be further improved



through type inference, which allows the programmer to partially or com-
pletely omit types annotations. This is notably the case of the ML family
of functional programming languages, which combines static typing with
a very powerful type inference mechanism to provide both the safety of
statically typed languages and the flexible programming style of the more
dynamic approaches.

In the context of tierless programming languages, a type system can
also provide location information such as “where this code should run”
and communication information such as “what am I sending”. Combined
with a strong static typing discipline, this ensures that the correctness of
communications and library usage is checked statically by the compiler.
This can even be done in a fairly non-intrusive way by leveraging type
inference, ensuring that client and server expressions can be nested without
the need for too many annotations.

1.1.5 Modularity and encapsulation

Mixing tiers directly inside expressions provides a very fined-grained notion
of composition. However, programming large-scale software and libraries
also requires the capacity for modularity and encapsulation at larger scale.
Modularity is a property ensuring that software can be constructed much
like LEGO: by using independent bricks together to build a bigger struc-
ture. Each brick, or module, can use other modules but should be indepen-
dent and self-contained from other non-related modules. Such modularity
is also highly desirable in a tierless Web programming contexts. Indeed,
parts of a library could be entirely on the server or on the client and
programmers should be able to manipulate them freely. Unfortunately,
most tierless languages do not support such modular approach to pro-
gram architecture. Even in traditional Web programming languages such
as JAVASCRIPT, support for proper modular programming is very recent
(JAVASCRIPT modules were introduced in ES6, in 2015) and does not allow
manipulating modules directly nor provides proper encapsulation.
Encapsulation is the complementary aspect of modularity: it allows to
hide internal details of a library. Encapsulation improves the flexibility
of a complex application: by hiding how each part works internally, the
programmer should be able to swap them around as long as their external
capabilities are the same. Encapsulation also improves safety by ensur-



ing that programmers can not misuse the internal details of a library by
mistake. Encapsulation is essential for tierless Web programming: the de-
tails of how the server and client parts of a widget communicate with each
other should not matter, as long as it provides the intended functionality.
Communications should only be an internal implementation detail.

To solve these problems, we propose to leverage a well-known tool: ML-
style modules.

ML modules On top of providing powerful functional programming con-
structs and static typing, modern ML languages feature a very expressive
module system. In these languages, the module language is separate from
the expression language. While the language of expression allows to pro-
gram “in the small”, the module language allows to program “in the large”.
In most languages, modules are compilation units: a simple collection of
type and value declarations in a file. The SML module language [Mac-
Queen, 1984] uses this notion of collection of declarations (called structure)
and extends it with types (module specifications, or signatures), functions
(parametrized modules, or functors) and function application, forming a
small typed functional language.

In the history of ML languages, ML-style modules have been infor-
mally shown to be very expressive tools to architect software. Functors,
in particular, allow to write generic implementations by abstracting over a
complete module. Furthermore, ML modules provide very good encapsula-
tion through the use of module signatures and abstract datatypes [Leroy,
1995, Crary, 2017]. Module signatures allow to restrict which members
of a module are exposed to the outer world while abstract datatypes al-
low to hide the definition of a given type. Together, they allow to finely
control the external interface of a library in order to enforce numerous
properties. Another very desirable feature, called separate or incremental
compilation, is the ability of the compiler to handle each module separately
without needing to recompile all the dependent modules. This allows only
the minimal amount of modules to be recompiled after a change which is
essential for a fast development cycle. Separate compilation also improves
modularity: indeed, checking that a module can indeed be compiled in
isolation ensures that compilation can not fail later, in the context of a
bigger program. Rich module systems such as ML’s have been shown to



provide excellent support for separate compilation [Leroy, 1994, Swasey
et al., 2006].

Modular and tierless Associating a module language supporting proper
modularity, encapsulation and separate compilation in a tierless program-
ming setting is, however, quite delicate. Indeed, while separate compilation
is available for languages with rich module systems such as ML, most tier-
less programming languages rely on whole program compilation to do the
slicing. Furthermore, functors are very expressive and raise numerous is-
sues when combined with tierless features that allows to interleave client
and server sections.

1.2 Eliom

The ELIOM language proposes to solve both fine-grained and large-scale
modularity issues. ELIOM is an extension of OCAML, an industrial-strength
programming language of the ML family, for tierless web programming.
Through the use of new syntactic constructs, it allows to create complete
web applications as a single ELIOM program describing both the client
and the server behaviors. These new constructions allow statically-checked
client-server communications, along with the ability to express rich client-
server behaviors in a modular way. Although this increased expressivity
could induce significant performance penalties, this is not the case thanks
to an efficient compilation and execution scheme. ELIOM programs are
compiled statically in two parts: the first part runs on the server while the
second part is compiled to JAVASCRIPT and runs on the client. ELIOM
also inherits the powerful type system and module system from OCAML,
along with a rich ecosystem. This allows us to take advantage of numerous
OCAML libraries, such as the rest of the OCSIGEN project.

1.2.1 The Ocsigen project

ELIOM is part of the larger OCSIGEN project [Balat et al., 2009]. OcsI-
GEN provides a comprehensive set of tools and libraries for developing Web
applications in OCAML, including the compiler Js_ OF _ocAML [Vouillon
and Balat, 2014], a Web server, and libraries for concurrency [Vouillon,



2008], HTML manipulation |TyXML| and database interaction [Scherer
and Vouillon, 2010]. OCSIGEN libraries take deep advantage of the OCAML
type system to provide guarantees about various aspects of client- and
server-side Web programming. For example, HTML validity is statically
guaranteed by the type system [TyXML|. These guarantees are comple-
mentary to the ones that ELIOM provides.

Although this thesis will focus on the language extension, ELIOM also
comes with a large set of libraries for client and /or server programming that
leverages the powerful new constructs introduced by the language. This
notably includes RPCs; a functional reactive library for Web programming;;
a GUI toolkit [Ocsigen Toolkit]; a powerful session mechanism and an
advanced service identification mechanism [Balat, 2014]. Some examples
of these libraries, and how to implement them, are given in Chapter 2.

1.2.2 Principles of the Eliom language

All of the modules and libraries in OCSIGEN, and in particular in the ELIOM
framework, are implemented on top of a unique core language. The design
of this core language is guided by a set of six properties.

Explicit communications. ELIOM uses manual annotations to determine
whether a piece of code is to be executed server- or client-side. This design
decision stems from our belief that the programmer must be well aware of
where the code is to be executed, to avoid unnecessary remote interaction.
Explicit annotations also prevent ambiguities in the semantics, allow for
more flexibility, and enable the programmer to reason about where the
program is executed and the resulting trade-offs. Programmers can thus
ensure that some data stays on the client or on the server, and choose how
much communication takes place.

A simple and efficient execution model. ELIOM relies on a novel and
efficient execution model for client-server communication that avoids back-
and-forth communication. This model is simple and predictable. Having
a predictable execution model is essential in the context of an impure
language, such as OCAML.



Leveraging the type system. ELIOM introduces a novel type system that
allows composition and modularity of client-server programs while preserv-
ing type-safety and abstraction. This ensures, via the type-system, that
client functions are not called by mistake inside server code (and con-
versely) and ensures the correctness of client-server communications.

Integration with the host language. ELIOM is an extension of OCAML.
Programmers must be able to leverage both the language and the ecosys-
tem of OCAML. OCAML libraries can be useful on the server, on the client
or on both. As such, any OCAML file, even when compiled with the regular
OCAML compiler, is a valid ELioOM module. Furthermore, we can specify
if we want to use a given library on the client, on the server, or everywhere.

Modularity and encapsulation. Module and type abstractions are very
powerful programming tools. By only exposing part of a library, the pro-
grammer can safely hide implementation details and enforce specific prop-
erties. ELIOM leverages module abstraction to provide encapsulation and
separation of concern for widgets and libraries. By combining module ab-
straction and tierless features, library authors can provide good APIs that
do not expose the fine-grained details of client-server communication to
the users.

Composition. The ELiOM language allows to define and manipulate on
the server, as first class values, fragments of code which will be executed on
the client. This gives us the ability to build reusable widgets that capture
both the server and the client behaviors transparently. This makes it pos-
sible to define client-server building blocks (and libraries thereof) without
further explicit support from the language.

This thesis will explore the consequences of these properties by present-

ing the design, the formalization and the implementation of the ELIOM
language.

1.3 Plan

ELIOM aims to be a usable programming language. As such, we introduce



ELiOM from a programming perspective in Chapter 2. Tierless program-
ming goes further than just gluing client and server pieces of code together.
Through the various examples, we show that ELIOM enables new program-
ming idioms that allows to build web applications and libraries safely and
easily while providing very good encapsulation and modularity properties.

As an extension of OCAML, ELIOM is a compiled language. As for all
compiled languages, there is a certain tension between the “intuitive” se-
mantics, explained in term of syntactic reduction over the source language,
which is easy to grasp by beginners, and the “real” semantics, which is ex-
pressed in term of compilation to a target language and the semantics of
this target language. While the interpreted semantics is easier to explain,
the implementation of ELIOM uses the compiled semantics. The goal of the
formalization of ELIOM was precisely to resolve that tension by ensuring
that both semantics agree. For this purpose, we proceed in several steps.

ELIOM is not a language created in isolation, it extends the OCAML
programming language. Similarly, our formalization of ELIOM is based on
a simpler ML language. The ML family of programming language is quite
large and contains many different flavors. Our first step is to describe a
simple ML language with modules which forms a reasonable subset of the
OCAML language. This is done in Chapter 3.

In Chapter 4, we define the ELIOM, language, a subset of ELIOM which
is amenable to formalization, and describe its type system and interpreted
semantics, along with various properties with relation to the base ML lan-
guage. ELIOM is compiled by producing two regular OCAML programs for
each ELIOM program. Similar, our compilation scheme for ELIOM, emits
two ML programs with additional primitives. The compilation scheme and
the target languages are described in Chapter 5, along with the simulation
theorem which ensure that the interpreted semantics and the compiled se-
mantics correspond.

This theorem, however, is not the end of the story. The implementation
of programming languages rarely fits directly to the idealized formalization.
This certainly applies to OCAML, and thus also to ELIOM. In Chapter 6,
we present the implementation of ELIOM as an extension of OCAML. We
expose its challenges and the choices we made to make the implementation
possible. One particularly important property is the integration between



ELIiOM and the vanilla OCAML compiler.

Finally, Chapter 7 explores the competitors and inspirations of the ELIOM
language, both in the field of tierless Web programming but also in var-
ious other domains such as distributed programming and staged meta-
programming. Chapter 8 concludes with various remarks on tierless Web
programming.

1.4 Contributions

ErioMm, and the OCSIGEN project, were initiated by Vincent BALAT and
Jérome VOUILLON several years ago. It enjoyed the input of many con-
tributors along the years, who participated to the improvement and the
refinement of various ideas you will find in this thesis. In particular, frag-
ments and sections and their compilation were already present in ELIOM
before this thesis started.

My contribution can be summarized as follows:

e A new type system for the ELIOM constructs as an extension of the
OCAML type system, including the notion of converters. Previous at-
tempts at typing were limited at best, and unsound and hackish at worst.

e A new module system which fits the programming model of ELIOM while
preserving the good properties of the OCAML module system such as
abstraction and modularity.

e A formalization of the type system, the interpreted semantics and the
compilation scheme.

e A new implementation of the type checker, the compiler and the runtime
of ELIOM which more closely reflects the formalization.

More precisely, many examples and libraries presented in Chapter 2 have
been developed along the years as part of the OCSIGEN ecosystem, most re-
cently by Vasilis PAPAVASILIEOU, Vincent BALAT and Jéréme VOUILLON.
Furthermore, the compilation of sections, fragments and injections, along
with the basic primitives that are presented in Chapter 5, are distilled
versions of the original ELIOM implementation due to Pierre CHAMBART,
Grégoire HENRY, Benedikt BECKER and Vincent BALAT.



2 Programming with Eliom

"A training course.” I look at him. "What in? Windows NT system

administration?"

He shakes his head. "Computational demonology for dummies.”
Charles Stross, The Atrocity Archive

One of the goal of the ELIOM language is to provide the essential build-
ing blocks for type-safe, efficient, tierless web programming. In order to
demonstrate this, we first introduce ELIOM’s core concept in Section 2.1,
then provide numerous examples. Our examples are extracted from code
that appears in the OCSIGEN tutorial [Tutorial] and in the ELIOM library
|[Eliom|. Each example was chosen to illustrate a particular new program-
ming pattern that is used pervasively in the ELIOM ecosystem.

For clarity, we add some type annotations to make the meaning of the
code clearer. These annotations are not necessary. While we use the
OCAML language, we only assume some familiarity with functional lan-
guages.

2.1 Core concepts

EvrioMm only adds a few new constructions. The aim here is to provide
constructions that are sufficiently minimal to be implemented on top of
OCAML but also sufficiently expressive to provide convenient implementa-
tions of all the Web programming idioms as libraries.

2.1.1 Sections

In ELIOM, we explicitly mark where a definition should be executed through
the use of section annotations. We can specify whether a declaration is to
be performed on the server or on the client as follows:
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let%server s
let%client c

A third kind of section, written shared, is used for code executed on both
sides. Sections allow the programmer to group related code in the same
file, regardless of where it is executed.

In the rest of this thesis, we use the following color convention: client is
in yellow, server is in blue and shared is in green. Colors are however
not mandatory to understand the rest of this thesis.

2.1.2 Client fragments

While section annotations allow programmers to gather code across loca-
tions, it doesn’t allow convenient communication. For this purpose, ELIOM
allows to include client-side expression inside a server section: an expres-
sion placed inside [%client ... ]Jwill be computed on the client when
it receives the page; but the eventual client-side value of the expression
can be passed around immediately as a black box on the server. These
expressions are called client fragments.

let%server x : int fragment = [%client 1 + 3 ]

For example, here, the expression 1 + 3 will be evaluated on the client,
but it’s possible to refer server-side to the future value of this expression
(for example, put it in a list). The variable x is only usable server-side,
and has type int fragment which should be read “a fragment containing
some integer”. The value inside the client fragment cannot be accessed on
the server.

2.1.3 Injections

Fragments allow programmers to manipulate client values on the server.
We also need the opposite direction. Values that have been computed on
the server can be used on the client by prefixing them with the symbol ~%.
We call this an injection.

let%server s : int =1 + 2
let%sclient ¢ : int = ~%s + 1



Here, the expression 1 + 2 is evaluated and bound to variable s on the
server. The resulting value 3 is transferred to the client together with the
Web page. The expression ~%s + 1 is computed client-side.

An injection makes it possible to access client-side a client fragment
which has been defined on the server:

let%server x : int fragment = [%client 1 + 3 ]
let%sclient c : int = 3 + ~%X

The value inside the client fragment is extracted by ~%x, whose value is 4
here.

2.2 Client-server behaviors

These three constructions are sufficient to create complex client-server in-
teraction, as we now demonstrate in our first example. The hint button
function below creates a button labeled “Show hint” that pops up a dialog
box when activated. The message contained in the dialog box is a server-
side string that is given as argument to the function hint button. One
additional property is that the HTML is generated server-side and sent to
the client as a regular HTML page.

For this purposes, we use an HTML DSL [TyXML] that provides com-
binators such as button and a onclick (which respectively create an
HTML tag and an HTML attribute). See Section 2.5.1 for more details on
this DSL. The ~a is the OCAML syntax for named arguments. Here, it is
used for the list of HT'ML attributes.

Our function is implemented using a handler for the onclick event:
since clicks are performed client-side, this handler needs to be a client
function inside a fragment. Inside the fragment, an injection is used to
access the argument msg that contains the string to be showed to the
user. The produced HTML fragment is shown in Example 2.1b and the
inferred type in Example 2.1a. As we can see, this type does not expose the
internal details of the widget’s behavior. In particular, the communication
between server and client does not leak in the API: This provides proper
encapsulation for client-server behaviors. Furthermore, this widget is easily
composable: the embedded client state cannot affect nor be affected by any
other widget and can be used to build larger widgets.
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let%server hint_button msg =
button
~button type: ‘Button
~a:[a_onclick [%client fun
[pcdata "Show hint"]

-> alert ~%msg] 1]

valsserver hint button : string -> Html.element
(a) Implementation and interface

<button onclick="...">
Show hint
</button>

(b) Emitted HTML

Example 2.1: A button that shows a message

2.2.1 Introducing side effects

We now want to generalize our button widget by creating a button that
increments a client-side counter and invokes a callback each time it is
clicked. This is implemented by the counter function, shown below. This
client function modifies the widget’s state (the client-side reference state)
and then calls the user-provided client-side callback action. This demon-
strates that the higher-order nature of OCAML can be used in our client-
server setting, and that it is useful for building server-side Web page frag-
ments with parameterized client-side behaviors. In addition, note that
the separation between state and action makes it straightforward to ex-
tend this example with a second button that decrements the counter while
sharing the associated state.

let%server counter (action: (int -> unit) fragment) =
let state = [%client ref 0 ] in
button
~button_ type: ‘Button
~a:[a_onclick
%client fun _ -> incr ~%state; ~%action !(~%state) 1]
[pcdata "Increment"]



2.2.2 Communication and execution scheme

Our counter widget showcases complex patterns of interleaved client and
server code, including passing client fragments as arguments to server func-
tions, and subsequently to client code. This would be costly if the com-
munication between the client and the server were done naively.

EvLioM employs an efficient communication mechanism. Specifically, the
server only ever sends data along with the initial version of the page. This
is made possible by the fact that client fragments are not executed imme-
diately when encountered inside server code. Intuitively, the semantics,
presented formally in Section 4.3, is the following. When the server code is
executed, the encountered client code is not executed right away; instead
it is just registered for later execution once the Web page has been sent
to the client. Only then is the client code executed. We also guarantee
that client code, be it either client sections or fragments, is executed in the
order that it was encountered on the server.

Let us consider the counter example above. When calling the counter
function, we first encounter the [%client ref 0] fragment. We generate
a fresh identifier that will be used to identify the result of the execution on
the client. We store in a queue the fact that this piece of code should be
run later. We also return the generated identifier. Later on, we encounter
the fragment containing the callback called when the button is pressed:
[sclient fun _ -> incr ~%state; ~%action !(~%state)]]. As be-
fore, we generate a fresh identifier and register this piece of code to be
run on the client. We also send the content of injections ~%state and
~%action. Note that since action is a fragment, it is only represented
by an identifier that will be used to find the value on the client. Once the
server code has been executed, we send the information necessary for the
client-side execution to the client. For example, that the identifier previ-
ously generated is associated to the result of ref 0. We can then execute
the client-side part of the ELIOM program. Using the sent information, we
can execute client fragments and injections in the order expected by the
programmer.

This presentation might make it seem as if we dynamically create the
client code during execution of the server code. This is not the case.
Like OCAML, ELIOM is statically compiled and separates client and server
code at compile time. During compilation, we statically extract the code
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included inside fragments and compile it as part of the client code to
JAVASCRIPT. This allows us to provide both an efficient execution scheme
that minimizes communication and preserve side effect orders while still
presenting an easy-to-understand semantics. We also benefits from opti-
mizations done by the JS_ OF OCAML compiler, thus producing efficient
and compact JAVASCRIPT code.

2.3 Heterogeneous datatypes

Some datatypes are represented in fundamentally different ways on the
server and on the client. This is a consequence of the different nature
of the server and the client environments. ELIOM properly models this
heterogeneous aspect by allowing to relate a client and a server datatype
that share a similar semantics while having different definitions. We use
this feature to present a safe and easy to use API for remote procedure
calls (RPCs).

2.3.1 Remote procedure calls

When using fragments and injections, the only communication taking place
between the client and the server is the original HT'TP request and re-
sponse. However, further communication is sometimes desirable. A remote
procedure call is the action of calling, from the client, a function defined
on the server. We present here an RPC API implemented using the ELiOM
language. The API is shown in Figure 2.1 and an example in Figure 2.2.

type%server (’'i,’'o) t
Il'I t

type%sclient (i, o) ='1i ->

val%server create : ('i ->
Figure 2.1: Rpc signature

let%server plusl : (int, int) Rpc.t = Rpc.create (fun x -> x + 1)

let%sclient f x = ~%plusl x + 1

Figure 2.2: Usage of the Rpc module
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In Figure 2.2, we first create server-side an RPC endpoint using the func-
tion Rpc.create. Our example RPC adds 1 to its argument. The endpoint
is therefore a value of type (int,int)Rpc.t, i.e., an RPC whose argument
and return values are both of type int. The type Rpc.t is abstract on the
server, but is a synonym for a function type on the client. Of course, this
function does not contain the actual implementation of the RPC handler,
which only exists server-side.

To use this API, we leverage injections. By using an injection in ~%plusl,
we obtain on the client a value of type Rpc.t. We describe the underlying
machinery that we leverage for converting RPC endpoints into client-side
functions in Section 2.3.2. What matters here is that we end up with a
function that we can call like any other; calling it performs the remote
procedure call.

We can now combine the RPC API with the counter widget defined in
Section 2.2.1 to create a button that saves the value of the counter on the
server. This is presented in Example 2.2. We assume the existence of a
save_ counter function, which saves the counter in a database, and of the
counter function defined previously. The signature of these functions are
shown in Example 2.2a. We then proceed to define save counter rpc
(i.e., the server-side RPC interface for save counter), and inject it into
a fragment f. This fragment is subsequently used as the user-provided
callback for counter. This way, each time the counter is incremented, its
new value is saved server-side.

The RPC API we proposed is “blocking” the execution waits for the

valsserver save counter : int -> unit
val%server counter : (int -> unit) fragment -> Html.t

(a) Environment

let%sserver save counter rpc : (int, unit) Rpc.t =
Rpc.create save_counter

let%sserver widget with save : Html.element =

let f = [%client ~%save counter rpc] in
counter f

Example 2.2: Combination of the counter and the RPC API.
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remote call to finish before pursuing, thus blocking the rest of the client
program. Remote procedure calls should, on the contrary, be made asyn-
chronously: the client program keeps running while the call is made and the
result is used when the communication is done. In the actual implementa-
tion, we use the LwT library [Vouillon, 2008| to express asynchronous calls
in a programmer-friendly manner through promises. The use of LwT is
pervasive in the ELIOM ecosystem both on the server and on the client. In
this thesis, we will simply omit mentions of the LWwT types and operators
for pedagogic purposes.

2.3.2 Converters

In the RPC API, we associate two types with different implementation on
the server and on the client. We rely on injections to transform the datas-
tructure when moving from one side to the other. This ability to transform
data before it is sent to the client via an injection is made possible by the
use of converters. Figure 2.3 broadly presents the converter API. Given a
serialization format serial, a converter is a pair of a server serialization
function and a client de-serialization function. Note that the client and
server types are not necessarily the same. Furthermore, we can arbitrarily
manipulate the value before returning it. Several predefined converters
are available for fragments, basic OCAML datatypes, and tuples in the
module Conv. Implementation details about converters can be found in
Section 4.2.1.

We can use converters to implement the RPC API (Example 2.3). The
server implementation of Rpc. t is composed of a handler, which is a server
function, and a URL to which the endpoint answers. Our serialization
function only sends the URL of the endpoint. The client de-serialization
function uses this URL to create a function performing an HTTP request
to the endpoint. This way, an RPC endpoint can be accessed simply with

type serial (* A serialization format *)

> type%server ('a, 'b) converter = {
serialize : 'a -> serial ;
deserialize : (serial -> 'b) fragment
}

Figure 2.3: Schematized API for converters



an injection. Thus, for the create function, we assume that we have a
function serve of type string -> (request -> answer)-> unit that
creates an HTTP handler at a specified URL. When Rpc.create is
called, a unique identifier id is created, along with a new HTTP end-
point "/rpc/id" that invokes the specified function.

This implementation has the advantage that code using the Rpc module
is completely independent of the actual URL used. The URL is abstracted
away. Converters preserve abstraction by only exposing the needed infor-
mation.

2.3.3 Client-server reactive broadcasts

In the previous example, we used converters on rather simple datatypes:
only a URL was sent, and a closure was created client-side. In this exam-
ple, we use converters for a more ambitious API: lift Functional Reactive
Programming (FRP) to be usable across client-server boundaries.

type%server ('i,’'o) t = {
url : string ;
handler: ’'i -> 'o0 ;
}
type%sclient ('i, 'o) t = '1 -> ‘o

let%server serialize t = serialize string t.url
letsclient deserialize x =

let url = deserialize string x in

fun i -> XmlHttpRequest.get url i

let conv = {
serialize = serialize ;
deserialize = [%client deserialize] ;

}

s let%server create handler =

let url = "/rpc/" ~ generate new _id () in
serve url handler ;
{ url ; handler }

Example 2.3: Simplified RPC implementation corresponding to Figure 2.1.



FRP is a paradigm that consists in operating on streams of data, either
discrete (events) or continuous (signals). It has been used successfully to
program graphical interfaces in a functional fashion, and can also be used
to implement Web interfaces. Here, we show how to create an API that
allows broadcasting server reactive events to a set of clients.

We assume pre-existing libraries implementing the following two APIs:
An untyped broadcast API (Figure 2.4) and an FRP event API (Fig-
ure 2.5). Both of these APIs are orthogonal to ELIOM’s primitives; we can
implement broadcast with standard Web techniques, and use the OCAML
library React for FRP events. The broadcast API operates on messages of
type serial, the serialization type introduced in Figure 2.3.

Let us now implement the typed broadcast API shown in Figure 2.6. It
is quite similar to the RPC API: we have a type t with different imple-
mentations on the client and the server, and a server function create that
takes a converter and an event stream as argument and produces a value

val%server t
val%sserver create : url -> t
val%server send : t -> serial -> unit

5 valsclient subscribe : url -> (serial -> unit) -> unit

Figure 2.4: Broadcast: Untyped API

type 'a event
(** Events with occurrences of type [’'a] *)

val create : unit -> ’'a event * ('a -> unit)
(** [create ()] returns an event [e] and a [send] function *)

val iter : (’'a -> unit) -> ’'a event -> unit
(** [iter f e] applies [f] to [e]’s occurrences *)

Figure 2.5: Event: Reactive events API

’ ’

i:
ir

type%server (

o) t
type%client ( t

0)

’ ’

= '0 Event.event

val%sserver create : ('i, 'o) converter -> 'i event -> ('i, ‘o) t

Figure 2.6: BroadcastEvent: Shared reactive events API



of type t. Here, we use a converter explicitly in order to transfer elements
on the broadcast bus.

The implementation of the Broadcast module is shown in Figure 2.7.
On the server, a BroadcastEvent. t is composed of a converter that is used
to transfer elements together with a URL. The create function starts by
creating an untyped broadcast endpoint. We then use Event.iter to
serialize and then send each occurrence of the provided event.

We now need to create a converter for BroadcastEvent.t. We need to
transmit two values: the URL of the broadcast endpoint, so that the client
can subscribe, and the deserialization part of the provided converter, so
that the client can decode the broadcasted messages. raw_conv provides
a converter for a pair of a URL and a fragment. In addition to receiving
this information, the client deserializer creates a new event stream and
subscribes to the broadcast endpoint. We connect the broadcast output to
the event stream by passing along all the (deserialized) messages.

As we can see in this example, we can use converters explicitly to setup
very sophisticated communication schemes in a safe and typed manner.
We also use the client deserialization step to execute stateful operations as
needed on the client. Note that using a converter here allows effective use
of resources: the only clients that subscribe to the broadcast are the ones
that really need the event stream, since it has been injected.

2.4 Modules and signatures

In the previous examples, we declared simple ELIOM modules containing
client and server functions, along with signatures for such modules. We
also used “pure” OCAML declarations that are neither client nor server
such as the serial type (Figure 2.3) or the Event module (Figure 2.5).
We now give a quick description of the OCAML module system and some
of the ELIOM extensions.

2.4.1 A primer on OCaml modules

The OCAML module system forms a second language separate from the
expression language. While the language of expressions allows to program
“in the small”, the module language allows to program “in the large”. In
most languages, modules are compilation units: a simple collection of type



type%sserver (’'i,’'o) t = {
conv : ('i, 'o) converter ;
url : string ;

}

typesclient (

i,’'o) t = 'o Event.event

let%server create (conv : (’'i, ’'o0) conv) (event : ’'i Event.event) =
let url = "/broadcast/" ~ generate new _id () in
let t = Broadcast.create url in
let send x =
Broadcast.send t (conv.serialize x)
in
let () = Event.iter send event in
{ conv ; url }

type%sclient ('i, 'o) t = 'o Event.event

let%server raw conv : (url * ’'a fragment, url * ’a) converter
= Conv.pair Conv.url Conv.fragment

let%server serialize t = raw _conv.serialize (t.url, t.conv.deserialize)
let%client deserialize s =

let url, deserial msg =

~%raw_conv.deserialize s

in

let event, send = Event.create () in

let handler msg = send (deserial msg msg) in

Broadcast.subscribe url handler ;

event

let%server conv = {
serialize ;
deserialize = [%client deserialize] ;

Figure 2.7: BroadcastEvent: Shared reactive events. API shown in Fig-
ure 2.6.
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and value declarations in a file. The ML module language uses this notion
of collection of declarations (called structure) and extends it with types
(module specifications, or signatures), functions (parametrized modules,
or functors) and function applications, forming a small typed functional
language.

In the previous examples, we already implicitely used the module system:
each .ml file form a structure containing the list of declarations included
in the file. It is also possible to specify a signature for such module by
adding a .ml1i file. Let us now give a very simple example of functors. For
a longer (and better) introduction to modules and functors, please consult
the manual [Leroy et al., 2016] or the Real World OCaml book [Minsky
et al., 2013].

Functors are simply functions that take a module and return another
module. They can be used for a large variety of purposes. Here, we use
them to build up data structure based on some primitive operations. Let
us say we want to create dictionaries with keys of type t. One method
to implement efficient dictionaries is to use Binary Search Trees, which
requires a comparison function for values of type t in order to search in
the tree. Map.Make is a pre-defined functor in the OCAML standard library
that takes a module implementing the COMPARABLE signature as argument
and returns a module that implements dictionaries whose keys are of the
type t in the provided module. In Figure 2.9, we use this functor to create
the StringMap module which defines dictionaries with string keys. We
then define d, a dictionary which associates "foo" to 3.

module type COMPARABLE = sig

type t
val compare : t -> t -> int
end

module Make (Key : COMPARABLE) : sig

type ‘a t
val add : Key.t -> 'a -> 'a t -> 'a t
(* ... *)

end

Figure 2.8: the Map module
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module StringComp = struct
type t = string
let compare = String.compare
end
module StringMap = Map.Make(StringComp)

let d : int StringMap.t = StringMap.add "foo" 3 StringMap.empty

Figure 2.9: Dictionaries from strings to ints

2.4.2 Modules and locations

Section annotations are also available on module declarations, which al-
lows to define client and server modules. One can also use regular OCAML
modules and functors inside client and server code. For example, in Fig-
ure 2.10, we use Map.Make on the client to define maps whose keys are
JAVASCRIPT strings. JAVASCRIPT strings are fairly different from OCAML
strings, as they are represented by ropes instead of mutable byte arrays,
hence the need for a different type. Note here that a functor from vanilla
OCAML is applied to a client module and returns a client module.

As we saw in the previous examples, we can mix declarations from mul-
tiple locations inside the same module. Such modules are called “mixed”.
An important constraint is that, as you go down inside sub modules, loca-
tions should be properly included: A client module can not contain server
declarations and conversely, but mixed modules can contain everything.

module%client JStr = struct

type t = Js.string

let compare = Js.compare string
end

module%client JStrMap = Map.Make(JStr)

Figure 2.10: Map of js strings
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2.4.3 OCaml integration

We consider an additional location, “base”, which can only contain OCAML
constructs. Pure OCAML declarations such as serial, including pure
OCAML modules, are considered of location base and are usable both on
the client and on the server. Side-effecting base code will be executed on
both the client and the server. ELIOM guarantee that pieces of code inside
base locations can only contain pure OCAML code, without any of the
additional ELIOM constructs. The semantics of base code is guaranteed
to be exactly the same as the vanilla OCAML semantics. Furthermore,
OCAML library can be imported and linked inside ELIOM projects freely.
It is even possible to use the compilation output of the regular OCAML
compiler.

Additionally, it is possibly to decide that a given OCAML library should
be imported in ELIOM only client or server side. For example, we might
want to use a vanilla OCAML database library in our ELIOM project. We
can simply specify that this library should only be loaded on the server
and the ELIOM type system will prevent its use it in client code.

2.4.4 Heterogeneous implementations

Shared sections make it possible to write code for the client and the server
at the same time. This provides a convenient way of writing terse shared
implementations, without duplicating logic and code. This does not neces-
sarily entail that everything is shared. In particular, base primitives might
differ between client and server, though the overall logic is the same. Just
as we can implement heterogeneous datatypes with different client- and
server-side representations, we can also provide interfaces common to the
client and the server, with different client- and server-side implementations.
We consider the case of database access. We first assume the existence of a
server function get age of type string -> int that performs a database
query and returns the age of a person.

We can easily create a client version of that function via our RPC API
of Figure 2.1.

let%sserver get age rpc = Rpc.create get age
let%sclient get age = %get age rpc

The API is then:
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val%sshared get age : string -> int

We can use this function to write widgets that can be used either on the
client or on the server:
let%shared person widget name =
div ~a:[a class "person"] [
text (name™" : "~string of int(get age name))

]

This technique is used pervasively in ELIOM to expose implementations
than can be used either on the client or on the server with similar semantics,
in a very concise way.

2.5 Mixed client-server data structures

We can readily embed client fragments inside server data structures. As a
simple example of such a mixed data structure, consider a list of button
names (standard server-side strings) and their corresponding client-side
actions. Example 2.4 presents a function that takes such a list and builds
an unordered HTML list of buttons.

ErioMm makes such mixed data-structure particularly easy to write. Hav-
ing explicit annotations with the usage of fragments is essential here. This
would be quite difficult to achieve if the delimitation between client and
server values were implicitly inferred.

let%sserver button list (lst : (string * handler fragment) list) =
ul (List.map (fun (name, action) ->
1i [button
~button type: ‘Button
~a:[a onclick ~%action]
[pcdata namell)
1st)

Example 2.4: Function generating a list of buttons

2.56.1 HTML

A common idiom in Web programming is to generate the skeleton of a Web
page on the server, then fill in the holes on the client with dynamic content,
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or bind dynamic client-side behaviors on HTML elements. In order to do
that, the usual technique is to use the id or class HTML properties to
identify elements, and to manually make sure that these identifiers are used
in a coherent manner on the client and the server.

EvrioM simplifies this process by mean of a client-server HTML library
that allows injections of HT'ML elements to the client. Figure 2.11 shows
a simplified API, which is uniform across clients and servers. The API
provides combinators such as the div function shown below, which builds
a div element with the provided attributes and child elements. We already
used this HTML API in several previous examples.

type%shared attribute
type%sshared element

val%sshared div :
?a: (attribute list) -> element list -> element

valsserver a onclick :
(Event.t -> bool) fragment -> attribute

module%server Client : sig
val node : element fragment -> element
end

Figure 2.11: Html: The simplified HTML API

On the server, HT ML is implemented as a regular OCAML datatype.
When sending the initial HTML document, this datatype is converted to a
textual representation. This ensures compatibility with JAVASCRIPT-less
clients and preserves the usual behavior of a Web server.

On the client, we represent HTML nodes directly as DOM trees. The
mismatch between client and server implementations does not preclude us
from providing a uniform API. However, to permit injections of HTML
nodes from the server to the client, special care must be taken. In partic-
ular, we equip each injected node with an id, and id is the only piece of
data sent by the serialization function. The deserialization function then
finds the element with the appropriate id in the page. The a onclick
function finds the appropriate HT ML element on the client and attaches
the specified handler.



The fact that we use a uniform API allows us to abstract the specifici-
ties of the DOM and to provide other kinds of representations, such as a
virtual DOM approach. A further improvement that fits in our design is
nesting client HTML elements inside server HT ML documents without
any explicit DOM manipulation. This is done by the Client.node func-
tion (Figure 2.12), which takes a client fragment defining an HTML node
and converts it to a server-side HT' ML node that can be embedded into the
page. This function works by including a placeholder element server-side.
The placeholder is later replaced by the actual element on the client.

let%server node (x: element fragment) : element =
let placeholder = span [] in

let = [%client
let placeholder = ~%placeholder in
let x = ~%x in

Option.iter
(Dom.parent placeholder)
(fun parent ->
Dom.replaceChild parent placeholder x)
] in
placeholder
Figure 2.12: Implementation of Client.node

2.6 Shared values

We presented in Section 2.4.4 how we can use shared sections to write
code that is used both on the client and on the server. Using the ELIOM
features we have described, we can also create shared values, which have
a similar dual meaning, but at the level of expressions. The API is de-
scribed in Figure 2.13 while the implementation is shown in Figure 2.14.
Implementation of the converter for shared values is shown in Figure 2.15.
The server-side implementation of a shared value clearly needs to contain
a fragment that can be injected on the client. On the other hand, the client
cannot possibly inject a value on the server, so the client-side representation
only consists of a fragment. For injecting a server-side shared value on
the client, we use a converter whose server-side portion serializes only the
fragment, and whose client-side portion deserializes this fragment.
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> type%sclient (

’

{ srv :
b

type%sserver (’'a, 'b) shared value a; cli: 'b fragment }

'a, 'b) shared value

’

valsserver local : ('
valsclient local : ('

, 'b) shared value -> 'a
, 'b) shared value -> 'b

valsserver cli : ('
valsclient cli @ ('

, 'b) shared value -> 'b fragment
, 'b) shared value -> 'b

Figure 2.13: Shared values API

let%server local x = Xx.srv
let%sclient local x = x

let%server cli x = x.cli
let%sclient cli x = x

Figure 2.14: Shared values Implementation

let%server shared conv
(('a, 'b) shared value, (’a, 'b) shared value) converter
={
serialize = (fun x -> Conv.fragment.serialize x.cli);
deserialize = Conv.fragment.deserialize

}

Figure 2.15: Converter for shared values

2.6.1 Shared data-structures

Shared values are very useful when a given operation needs to be performed
both on the server and on the client, but in a way that matches the specific
requirement of each side. As an example, we present a cached dictionary
API for storing data of interest on both the server and the client. This
dictionary API should be well-adapted for ELIOM’s client-server style of
programming. On the server, the dictionnary is to be used while serving
a request, e.g., for locally caching data obtained from complex database
queries. It is frequently the case that the client needs access to the same
data; in that case, it is desirable that we avoid performing multiple RPCs.
To achieve this, the semantics of the server-side addition operation (func-
tion add) is such that the value does not only become available for future
server-side lookups, but also for client-side lookups. Of course, additional



items may be added client-side, but then there is no expectation of server-
side addition; the server-side dictionnary may not even exist any longer,
given that it was local to the code handling the request.

As with the Map module, we want to define our dictionary over arbitrary
keys. Let us first review what we need to define such a data-structure: We
want two comparison function: one on the server and one on the client. We
also need a converter that ensures we can transmit values from the server
to the client. For simplicity, we consider that the type of our keys is an
OCAML base type. The type of our shared dictionaries ('a, ’b)table
contains two type variables 'a and ’b, corresponding to the server- and
client-side contents respectively. The API in Figure 2.16 provides add and
find operations, as is typical for association tables, which are available on
both sides. The implementation is shown in Figure 2.17. A dictionnary
is implemented as a pair of a server-side dictionary and a client-side one.
The server-side add implementation stores a new value locally in the ex-
pected way, but additionally builds a fragment that has the side-effect of
performing a client-side addition. The retrieval operation (find) returns
a shared value that contains both the server side version and the client
side. On the client, however, we can directly use the local values. Note
that since the client-side type exactly corresponds to a regular map, we
can directly use the usual definitions for the various map operations. This
is done by including the M module on the client.

Several extensions of this API are possible. For pedagogic purposes,
the type of key we used here is a pure OCAML type on the base location
(Section 2.4.3). We could also have two different kinds of keys on the
server and on the client, for example OCAML strings on the server and
JAVASCRIPT strings on the client, which would ensure better efficiency.
The function would then need two comparison functions and a converter
between the two types. Alternatively, we could also easily create a full
blown replicated dictionary: by using the RPC API, the client can require
the server dictionary to be updated and by using the broadcast API, we
can distribute new additions to all clients.

Going further, shared values empower an approach to reactive program-
ming that is well-adapted for ELIOM’s client-server paradigm [Shared re-
active programming|. This approach is the subject of ongoing work. One
notable possible improvement is the notion of shared fragment, the analo-
gous of shared declarations for expressions, which allow to avoid some code



duplication present in the implementation in Figure 2.17.

2.6.2 Mixed functors

In the previous example, we defined a functor which creates a module
containing both client and server declarations. Such functors are called
mized. As we saw, mixed functors are fairly powerful and can be used
for a wide variety of purposes. However, contrary to client and server
functors, mixed functors are limited: arguments must be mixed modules,
mixed structures and functors can not be nested arbitrarily and injections
inside client-side bindings can only reference elements out of the functor.
Injections inside client fragments can be used in arbitrary ways. A more
precise description of these limitations is provided in Section 4.2.2.

2.7 A sophisticated example: accordions

We now demonstrate how to implement the well-known widget accordion.
An accordion is a kind of application menu that displays collapsible sections
in order to present information in a limited amount of space. The section
titles are always visible. The content of a section is shown when the user
clicks on its title. Only one section is open at a time. This widget can be
used in numerous contexts such as the body of news articles, trip details
in a train ticket search, etc.

In our example, sections are implemented independently and attached
to the accordion given as parameter. The distinctive characteristic of our
implementation, made possible by the two-level language, is that a section
can be generated freely either on the server or on the client, and attached to
an existing accordion. The example contains three sections, two generated
server-side and one added dynamically client-side to the same accordion.

The code is shown in Figure 2.19. The data structure representing the
accordion contains only a reference to a client-side function that closes the
currently open section. Functions new accordion and accordion section
are included in both the server and client programs (shared sections).
Function switch visibility isimplemented client-side only. It just adds
or removes an HTMUL class to the element, which has the effect of hiding or
showing the element through CSS rules. Function my accordion builds
a server-side HT'ML page containing an accordion with two sections. It
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module type T = sig

type t

val comparable : t -> t -> int

val%server conv : (t, t) conv
end

7 module Cache (Key : T) : sig

module M = Map.Make(Key)

type%shared (’'a, 'b) table = ('a M.t, 'b M.t) Shared.t

val%sshared add :

Key.t -> (

val%shared find : Key.t -> (

(* ...

: end

*)

a, 'b) Shared.t -> ('a, 'b) table -> (’'a, 'b) table

a, 'b) table -> (’'a, 'b) Shared.t

Figure 2.16: Signature

module Cache (Key : T) = struct
module M = Map.Make(Key)
type%shared (’'a, 'b) table = ('a M.t, 'b M.t) Shared.t

include%client M

let%server add id v tbl =
%client M.add ~%id ~%v ~%tbl ];
M.add id v.srv tbl.srv

let%server find id tbl =

{ srv

(* ...
end

*)

M.find id tbl ; cli = [%client M.find ~%id ~%tbl] }

Figure 2.17: Implementation

Figure 2.18: The SharedTable module
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letsclient switch visibility elt =
if Class.contain elt "hidden"
then Class.remove elt "hidden"
else Class.add elt "hidden"

type%shared toggle = (unit -> unit) ref fragment
let%shared new accordion () : toggle = [%client ref (fun () -> ()) 1]

let%sshared accordion section (accordion : toggle) sl s2 =
let contents =

div ~a:[a class ["contents"; "hidden"]] [text s2]
in
let handler = [%client fun  ->

let toggle = ~%accordion in

Itoggle (); (*close previous section*)

toggle := (fun () -> switch visibility ~%contents);

switch visibility ~%contents
]
in
let title = div ~a:[a _class ["title"]; a_onclick handler] [text sl1] in
div ~a:[a class ["section"]] [title; contents]

let%server my accordion () =
let accordion = new accordion () in
div [
accordion section accordion "Item 1" "Server side generated"
Client.node [%client
accordion section ~%accordion "Item 2" "Client side generated"
15
accordion section ccordion "Item 3" "Server side generated" ;

]

Figure 2.19: The accordion widget

Item 2

Client side generated

Figure 2.20: Resulting web page



also sends to the client process, together with the page, the request to
create the accordion (client fragment in function new_accordion) and to
append a new section to the accordion. For this purpose, we use function
Client.node on line 27.

2.8 Going further

Our examples demonstrate how the combination of fragments, injections
and converters can be used to build rich Web development libraries that
provide convenient programming interfaces. Using these same building
blocks, the ELIOM library additionally implements uni- and bi-directional
channels, progressive fetching of data, correct-by-construction links, and
client-server reactive programming. Interestingly, a common pattern aris-
ing across these examples (just like for our RPC and HTML examples of
Sections 2.3.1 and 2.5.1) is relating server and client datatypes that differ
in their structure and APIs, but that have related intuitive meaning. Of
course, the same building blocks and patterns can be used by the program-
mer to implement additional components outside the ELIOM library, thus
catering for their specific use cases.



3 The ML programming language

When I was a child, I was told that Santa Claus came in through
the chimney, and that computers were programmed in binary
code. Since then, I have learned that programming is better done
in higher-level languages, more abstract and more expressive.
Xavier Leroy, Polymorphic typing of an algorithmic language

Programming languages of the ML family are like curry: everyone cook
them differently and nobody agrees on the perfect ingredients, but they all
end up being delicious. For ML, the original ingredients [Milner, 1978| are
first class functions, parametric polymorphism, let bindings and algebraic
datatypes. With the years, several new ingredients have been added to the
mix; in particular mutable references, exceptions, pattern matching and a
module system; which form the base of many languages in the ML family
[Milner et al., 1990, Leroy et al., 2016].

Our version of ML contains the minimal amount of ingredients that
allows us to describe the ELIOM extensions: a core calculus with poly-
morphism, let bindings and parametrized datatypes in the style of Wright
and Felleisen [1994], accompanied by a fully featured module system in the
style of Leroy [1995]. We first present the syntax of the language in Sec-
tion 3.1 and its type system in Section 3.2. We then present the semantics
of this language in Section 3.3. Finally we indicate some relevant work in
Section 3.4.

3.1 Syntax

Let us first define some notations and meta-syntactic variables. As a gen-
eral rule, the expression language is in lowercase (e) and the module lan-
guage is in uppercase (M). Module types are in calligraphic letters (M).
More precisely: x are variables, p are module paths, X are module vari-
ables, 7 are type expressions and t are type constructors. x;, X; and t; are

45



Expressions

en=c (Constant)
| z; | px (Variables)
| Y (Fixpoint)
| (e e) (Application)
| Ax.e (Function)

| letz =cine
(Let binding)

c € Const (Constants)

Path

pu=X; [ pX | pi(p2)
Type Schemes

o u=Va'.r
Type Expressions

T = (Type variables)
| T—T1
| (7)ti | (77)p-t

(Type constructors)

(Function types)

(a) The expression language

Module Expressions

M:=X;|pX (Variables)
| (M: M)
(Type constraint)
| My (Ma)

(Functor application)
| functor(X;: M)M
(Functor)
| struct s end
(Structure)
Structure body
Su=¢e|D;S
Structure components
(Values)
| type (a")ti =7 (Types)
| module X; = M
(Modules)

D:=1let x;=¢

Programs

P ::= prog S end

Module types
M ::=sig S end (Signature)
| functor(X;: M) M,

(Functor)
Signature body
Su=¢|D;S
Signature components
Du=val z;: T (Values)
| type (a)ti =7  (Types)
| type (a’)t;
(Abstract types)
| module X;: M (Modules)
Environments
r:=s§

(b) The module language

Figure 3.1: ML grammar



identifiers (for values, modules and types). Identifiers (such as x;) have a
name part (z) and a stamp part (i) that distinguish identifiers with the
same name. Only the name part of identifiers is exposed in module signa-
ture. a-conversion should keep the name intact and change only the stamp,
which allow to preserve module signatures. Lists are noted with a star; for
example 7* is a list of type expressions. Indexed lists are noted (7;), with
an implicit range. Substitution of a by b in e is noted e[a — b]. Repeated
substitution of each a; by the corresponding b; is noted ela; — b;],. The
syntax is presented in Figure 3.1.

Expressions The expression language is a fairly simple extension of the
lambda calculus with a fixpoint combinator Y and let bindings let x =
e1 in eo. The language is parametrized by a set of constants Const. Vari-
ables can be qualified by a module path p. Paths can be either module
identifiers such as X;, a submodule access such as X;.Y, or a path appli-
cation such as X;(Y;.Z). Note that, as said earlier, that fields of modules
are only called by their name, without stamp.

Types Types are composed of type variables «, function types 71 — ™
and parametrized type constructors (71, 7e,...,7g)ti. Type constructors
can have an arbitrary number of parameters, including zero. Type con-
structors can be qualified by a module path p. Type schemes, noted o, are
type expressions that are universally quantified by a list of type variables.
Type schemes can also have free variables. For example: Va.(a, 8)t;.

Modules The module language is quite similar to a simple lambda cal-
culus: Functors are functions over module (except that arguments are an-
notated with their types). Module application is noted Mj(Ms). Modules
can also be constrained by a module type: (M : M). Finally, a module can
be a structure which contains a list of value, types or module definitions:
struct let x; = 2 end. Programs are lists of definitions.

Module types Module types can be either the type of a functor or a sig-
nature, which contains a list of value, types and module descriptions. Type
descriptions can expose their definition or can be left abstract. Typing en-
vironments are simply module signatures. We note them I" for convenience.



3.2 Type system

We now present the ML type system. For ease of presentation, we proceed
in two steps: we will first forget that the module language exists, and
present a self-contained type system for the expression language. We then
extend the typing relation to handle modules.

3.2.1 The expression language

We introduce the following judgments:
I've:r The expression e has type 7 in the environment I
See Figure 3.3.
I'>7m~7m Types 71 and m are equivalent in environment I'.
See Figure 3.4.
T'ET The type 7 is well formed in the environment T.
See Figure 3.2.

We note TypeOf(c) the type scheme of a given constant ¢. The instan-
ciation relation is noted o7 for a type scheme ¢ and a type 7. The
converse operation which closes a type according to an environment is
noted Close(T', 7). We use (D) € T to test if a given type or value is de-
clared in the environment I'. Note that for types, (type («;)t) € I" holds
also if ¢ is not abstract in I'.

Polymorphism One of the main benefit of programming language of the
ML family is the ability to easily define and use functions that operate
on values of various types. For example, the map function can applies to
all lists, regardless of the type of their content. Indeed, the type of map is
polymorphic:

map : Vaf. (a— ) — (a)list — (B)list

From a type checking point of view, this is possible thanks to two oper-
ations: instanciation and abstraction. Instanciation takes a type scheme,
which is a type where some variables have been universally quantified, and
replace all the quantified type variables by some type. It is used when
looking up a variable (rule VAR) or typechecking a constant (rule CONST).
For example, the type of map can be instantiated to the following type.

(int — bool) — (int)list — (bool)list



Once instantiated, the map function can be applied on a list with concretes
types. Naturally, we also need the converse operation: constructing a type
scheme given a type containing some type variables. Closing a type de-
pends on the current typing environments, we only abstract type variables
that have not been introduced by previous binders. Close(T, ) returns the
type scheme Vo ... «,.7 where the «; are free variables of 7 that are not
present in I'. While it is possible to apply the closing operation at any
step of a typing derivation, it is only useful at the introduction point of
type variables, in let bindings (rule LETIN). In the following example, we
derive a polymorphic type for a function that constructs a pair with an
element from the environment. We first use the close operation to obtain
a type scheme for f. Note that since « is present in the environment, it is
not universally quantified. We then use the instance operation to apply f
to an integer constant.

: VB. B—ax*fB=int—axint  Const(3) = int
(val a: o;val b: B)>(a,b):ax T'> f:int - a *xint I'>3:int
(val a:a)>pAb.(a,b):B—axp  (val a:a;val f:VB. B—axB)> f 3:(axint)
(val a:a)plet f=Ab.(a,b) in f 3:(a *int)

Parametric datatypes Parametric polymorphism introduces type vari-
ables in type expressions. In the presence of type definitions, it is natu-
ral to expect the ability to write type definitions which can contain type
variables. This leads us to parametric datatypes: datatypes which are
parametrized by a set of variables. (a)list is of course an example of such
datatype. Note that care must be taken when deciding the equivalence
of types. It the type is not abstract, i.e., its definition is available, we
can always unfold the definition, as shown in rule DEFTYPEEQ. However,
when considering an abstract type, we cannot unfold the type definition.
Instead, we check that head symbols are compatible and that parameters
are equivalent pairwise' . This is done in rule ABSTYPEEQ.

3.2.2 The module language

We introduce the following judgments:

!This is similar to the handling of free symbols in the unification literature.
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Figure 3.2: Type validity rules - ' 7
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Figure 3.3: ML expression typing rules - I'be: 7
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Figure 3.4: Type equivalence rules — I'> 7 7/



e M: M The module M is of type M in I
See Figure 3.5.

I'» M <: M’ The module type M is a subtype of M’ in T.
See Figure 3.6.

'eM The module type M is well-formed in I'.
See Figure 3.7.

The typing rules for OCAML-style modules are quite complex. In par-
ticular, the inner details of the rules are not well known, even by OCAML
programmers. Before presenting the typing rules in details, we will attempt
to give insight on why some features are present in the languages and what
are their advantages. For this purpose, we present two examples illustrat-
ing the need for applicative functors and strengthening, respectively. We
assume that readers are familiar with simpler usages of ML modules.

Applicative Functors Let us consider the following scenario: we are given
a module G implementing a graph data-structure and would like to imple-
ment a simple graph algorithm which takes a vertex and returns all the
accessible vertices. We would like the returned module to contain a func-
tion of type G.graph — G.vertex —set of vertices. How to implement
set of vertices? An easy but inefficient way would be to use lists. A
better way is to use proper sets (implemented with balanced binary tree,
for example). In OCAML, this is provided in the standard library by the
functor Set.Make, presented in Section 2.4.1, which takes a module im-
plementing comparison functions for the given type. We would obtain a
signature similar to the one below.

module Access(G : Graph) : sig
module VerticesSet : sig ... end
val run : G.graph — G.vertex — VerticesSet.set

end

However, this means we need to expose a complete module implementing
set of vertices that is independent from any other set module. This prevents
modularity, since any usage of our new function must use this specific set
implementation. Furthermore, this make the signature bigger than strictly
necessary. What we really want to expose is that the return type comes



from an application of Set.Make. Fortunately, we can do so by using the
following signature.

module Access(G : Graph) : sig
val run : G.graph — G.vertex — Set.Make(G.Vertex).set

end

Here, we export the fact that the set type must be the result of a functor
application on a module that is compatible with G.Vertex. The type
system guarantees that any such functor application will produces types
that are equivalent. In particular, if multiple libraries uses the Access
functor, their sets will be of the same types, which make composition of
libraries easier. This behavior of functors is usually called applicative.

Strengthening Let us now consider the program presented in Exam-
ple 3.1. We assume the existence of two modules, presented in Exam-
ple 3.1a. The module Showable exposes the abstract type t, along with
a show function that turns it into a string. The module Elt exposes a
type t equal to Showable.t and a value that inhabits this type. The pro-
gram is presented in Example 3.1b. We define a functor F' taking two
arguments E and S whose signature are similar to Elt and Showable, re-
spectively. The main difference is that E comes first and S.t is defined
as an alias of E.t. The functor uses the show function on the element
in F to create a string. It is natural to expect the functor application
F(Elt)(Showable) to type check, since Elt.t = Showable.t. We must,
however, check for module inclusion. While Elt is clearly included in the
signature of the argument F/, the same is not clear for Showable. We first
need to enrich its type signature with additional type equalities. We give
Showable the type sig type t = Showable.t ... end. It makes sense
to enrich the signature in such a manner since Showable is already in
the environment. Given this enriched signature, we can now deduce that
» (type t = Showable.t) <: (type t = E.t) since E.t = Elt.t = Showable.t.

The operation that consists in enriching type signatures of module iden-
tifiers with new equalities by using elements in the environment is called
strengthening |Leroy, 1994].



module Showable : sig
type t
val show : t— string
end
module Elt : sig
type t = Showable.t
val v :elt
end

(a) Typing environment

module F
(E : sig type t val v : t end)
(S : sig type t = E.t val show : t — string end)
= struct
let s = (S.show E.v)
end
module X = F(EIt)(Showable)

(b) Application of multi-argument functor using manifests

Example 3.1: Program using functors and manifest types

Typing rules

In the previous two examples, we showcased some delicate interactions be-
tween functor, type equalities and modularity in the context of an ML
module system. We now see in details how the rules presented in Fig-
ures 3.5 to 3.7 produce these behaviors.

Qualified access Unqualified module variables are typechecked in a sim-
ilar manner than regular variables in the expression language, with the
MODVAR typing rule. Qualified access (of the form X.a), both for the
core and the module language, need more work. As with the expression
language, the typing environment is simply a list of declaration. In par-
ticular, typing environments do not store paths. This means that in order
to prove I'> p.a: 7, we must first verify that the module p typechecks in
I': T'»p: M. We then need to verify that the module type M contains



a declaration (val a : 7). This is done in the QUALMODVAR rule for
the module language. The rules for the expression language are given in
Figure 3.8.

Let us now try to apply these rules to the module X with the following
module type. X contains a type ¢ and a value a of that type. We note
that module type X.

X : sig type t; val a:t end

We wish to typecheck X.a. One expected type for this expression is X.t.
However, the binding of v in X gives the type t, with no mention of X.
We need to prefix the type variable ¢ by the access path X. This is done in
the rule QUALMODVAR by the substitution Min; — p.n | n; € BV(S1)]
which prefixes all the bound variables of S1, noted BV (S;), by the path
p. Note here that we substitute only by the names declared before the
variable a. Indeed, a variable or a type can only reference names declared
previously in ML. To prove that X.a has the type X.t, we can write the
following type derivation.

(module X : X) € (module X : X)

(module X : X')» X :sig type t; val a:t end
QUALVAR WITH X.t = t[t — p.1
(module X : X)) X.a:X.t

MODVAR

Strengthening The strengthening operation, noted M /p, is defined in
Figure 3.9 and is used in the STRENGTH rule. It takes a module type M
and a path p and returns a module type M’ where all the type declarations,
abstract or not, have been replaced by type aliases pointing to the path
p. These type aliases are usually called “manifest types”. This operator
relies on the following idea: if p is of type M, then p is available in the
environment. In order to expose as many type equalities as possible, it
suffices to give p a type where all the type definition point to definitions
available in the environment. This way, we preserve type equalities even
for abstract types. This also mean that type equalities can be deduced
by only looking at the path and the module type. In particular, we do
not need to look at the implementation of p, which is important for the
purpose of separate compilation.



Applicative functors Let us consider a functor F' with the following type.
It takes a module containing a single type ¢ and return a module containing
an abstract type t' and a conversion function.

F: functor(X :sig type t end)(sig type t';val make : X.t —t’ end)

If we consider two modules X and Xy, does X7 = Xo imply F(X1).t =
F(Xs9).t 7 If that is the case, we say that functors are applicative. Oth-
erwise, they are generative’. Here, we consider the applicative behavior
of functors. This is implemented with the last strengthening rule which
ensures that the body of functors is also strengthened. For example, if M
is the type of the functor above, M/F is the following module type:

functor(X :sig type ¢ end)(sig type t' = F(X).t;val make : X.t =t end)

This justifies the presence of application inside paths. Otherwise, such
type manifests inside functors could not be represented. A more type-
theoretic description of generative and applicative functors can be found
in Leroy [1996].

Separate compilation Separate compilation is an important properties
of programming languages. In fact, almost all so-called “mainstream” lan-
guages support it. We can distinguish two aspects of this property: sep-
arate typechecking and separate code generation. In both cases, it means
that in order to process the file (either to type check it or to transform
it into another representation), we only need to look at the type of its
dependencies, not their implementation.

It turns out that the ML module system with manifest types lends itself
very well to separate typechecking [Leroy, 1994]. Indeed, let us consider a
program as a list of modules. Each module represents a compilation unit
(i.e., afile). Since module bindings in the typing environment only contains
module types, and not the actual module, typechecking a file only needs
the module type of the previous files, which ensure that we can typecheck
each file separately, as long as all its dependencies have been typechecked
before. This is expressed more formally in Theorem 1.

2SML only supports generative functors. OCAML originally only supported applicative
functors, but also supports the generative behavior since version 4.03.



Theorem 1 (Separate Typechecking). Given a list of module declarations
that form a typed program, there exists an order such that each module can
be typechecked with only knowledge of the type of the previous modules.
More formally, given a list of n declarations D; and a signature S such
that
»(Di;...;Dyp):S

then there exists n definitions D; and a permutation m such that
Vi <n, Di;...;Diw» Digr1: Dt > Dw(l); c. ;Dw(n) <: S

Proof. 1t is always possible to reorder declarations in a signature using the
SUBSTRUCT rule. This means we can choose the appropriate permutation
of definitions that matches the order of declarations. The rest follows by
definition of the typing relation. O

3.2.3 Inference

Full inference is one of the greatest strength of the ML programming lan-
guage. While we do not address inference formally in this thesis, here are
some remarks. Inference is of course decidable for the core language using
the well known W algorithm. It is “efficient”, which means here that it is
fast for usual programs, though pathological cases can be constructed. The
typechecking rules for modules are not syntax directed. The STRENGTH
rule, in particular, is free floating. Leroy [1994] presents how to turn this
into a syntax-directed type system, which allows inference as long as func-
tor arguments are annotated.



MODVAR QUALMODVAR

(module X; : M) el I'» p:(sig Si;module X; : M;Ss end)
s X;: M Ly p.X: Mn; = pn|n; € BV(S)]
STRENGTH
'ep: M ' M: M TrM<:M
Lep:M/p I'» M: M

'» M : functor(X;: M)M'  T» My: M
Ly My (M) : M'[X; — M)

reEM  X;¢BV(I) T;(module X;: M)» M: M
['» functor(X;: M)M : functor (X; : M)M’

'eEM T'»M: M
Ly (M:M): M

I've:t ;¢ BV(I') T;(val z;: Close(r,I'))» S:S
L'y (let z; =e¢;5):(val z; : 7;S)

FEr ¢ BV() T;(type (a")ti=7)»S5:S
I >(type (a*)ti =T, 5) :(type (O[*)ti = T,S)

'y M:M X;¢BV(') TI;(module X;: M)»S:S
I'»(module X; = M;s):(module X; : M;S)

L'e»S:S
I'» struct S end:sig S end I'be:e

Figure 3.5: Module typing rules — I'» m: M



SUBSTRUCT
7 [1;m] — [1;n] Vi € [1;m], I';D1;...; D Dy < D

I'»(sig Di;...; D, end) <: (sig Di;...; D), end)

I'omxmn

I'e»(val z;: 1) <:(val m; : T2)

I'> M <: Mo
I'» (module X; : M;) <: (module X; = My)

L'» M, <: M, [, (module X : M))» M, <: M.
I'» functor (X : M,)M, <: functor (X : M,) M.

T'orni~mn
I'»(type (")ti = 71) <: (type (a™)t; = 1)

I'»(type (a™)t;) <: (type (a*)ti)

Fe(a™)ticT

I'»(type (a¥)t;) <: (type (a)ti =7)

I'»(type (™)t =71) <: (type (a”)t;)

Figure 3.6: Module subtyping rules — I'» M <: M’



'es
I'Fsig S end I'kEe

reM, x;¢BV(') T;(module X;: M,)EM,
I'E functor (X; : My )M,

ti ¢ BV(I') T (type (")t ES
I'Etype (a")ti; S

'eM  z;¢BV(I') TI;(module X;: M)ES
I'Emodule X;: M; S

F'er t¢BV() T;(type (@ti=7)ES
I'Etype (a")ti=71; S

'er x;¢BV(I) TIj(valz;:7)ES
I'Evalxz;,:7; S

Figure 3.7: Module type validity rules — I'E M

QUALVAR
I'» p:(sig Si;val z; : 7382 end)

Iepax:7n — pn | n € BV(S)]

QUALDEFTYPEEQ
I'» p:(sig Si;type (a”)ti = 7;S2 end)

I'>(m)pt=T1[n; = p.n | n; € BV(S1)]jas — 7,
QUALABSTYPEEQ
C» p:(sig Si;type (a*)ti;So end) Vi, [o1i~7)
I'>(7;)p.t ~(7))p.t

Figure 3.8: Additional typing rules for the expression language



e/lp=c¢
(sig S end)/p = sig S/p end
(module X; = M;S)/p = module X; = M/p;S/p
(type (a")ti = 7;8)/p = type (")ti = (@")p.t; S/p
(type (a")ti;S)/p = type (a’)ti = (")p.t;S/p
(val z; : 7;8)/p=val z; : 7;S/p
)

(functor (X, : M)M’)/p = functor(X;: M)(M’'/p(X;

Figure 3.9: Module strengthening operation — M /p



3.3 Semantics

viu=c| Ax.p.e (Expressions)
V= {V* } | functor(p)(X;: M)M (Modules)
Vo i= {ai—v} | {Xim VY (Bindings)

Figure 3.10: ML values

We now define the semantics of our ML language. We use a rule-based
big step semantics with traces. Traces allows us to reason about execu-
tion order in a way that is compatible with modules, as we will see in
Section 3.3.1.

We note v for values in the expression language and V' for values in
the module language. Values are defined in Figure 3.10. Values in the
expression language can be either constants or lambdas. Module values
are either structures, which are list of bindings of values, or functors. We
note p the execution environment. Execution environments are a list of
value bindings. Note here that the execution environment is not mutable,
since reference cells are not in the language. We note the concatenation of
environment +. Environment access is noted p(z) = v where = has value
v in p. The same notation is also used for structures. Traces are lists of
messages. For now, we consider messages that are values and are emitted
with a print operation. The empty trace is noted (). Concatenation of
traces is noted Q.

Given an expression e (resp. a module m), an execution environment p,
a value v (resp. V) and a trace 0,

e 0,0

means that e reduces to v in p and prints #. The reduction rules are given
in Figure 3.11. The rules for the expression language are fairly traditional.
Variables and paths must be resolved using the VAR and QUALVAR rules.
Applications are done in two steps: first, we reduce both the function and
the argument with the APP rule, then we apply the appropriate reduction
rule for the application: BETA for lambda expressions, Y for fixpoints and



VAR QUALVAR

p(z) = v PV, V(z)=v CONSTANT CLOSURE
xév,@ pr=0,0 e ¢, ) \z.e =2 Az.p.e, ")
LETIN APP
e L0 0 e%v,@’ e=0,0 €LV 0 (vu)L" 0
(let =€ ine) =2 v,0@0 (e ey 0@ @p”

BeTA Y DELTA
pH{xovy P _
e——=1',0 (vAiz.(Yvax)=,0 d(c,v) =2",0
(Az.pl.ev)==0',0 (Yv)== /.0 (cv)=0",0
MODVAR QUALMODVAR STRUCT
p(X)=V pV.e V(X)=V SV, 0
XLV, () p XLV 0 (struct S end) =%V, 0
EMPTYSTRUCT MoDCLOSURE
e=21{},() functor (X : M)M =2 functor(p)(X : M)M, ()
MODCONSTR
MLV

(M: M)V, 0

MoDBETA
M =% functor(p)(X : M)M;,0 M V' ¢ Mf%‘/”,e”
MM L V" 0ay ap”
TYPEDECL MoDULEDECL
S=&V,.,0 MLyve gLV gy

(type (a*)ti = 7;8) = V., 0 (module X; = M;S) =% {X—=V} +V,,0Q¢

VALDECL e PROGRAM
eLvg gL oy S=LV,,6
(let z; = e;8) ==& {wv} + Vi, 0 prog S end =% V,(return), §

Figure 3.11: Big step semantics — e SN v, 0



DELTA for constants. The § operation gives meaning to application of a
constant to a value. d(c,v) = v’, 0 means that ¢ applied to v returns v" and
emits the trace 6. Let bindings are treated in a similar manner than lambda
expressions: the left hand side is executed, added to the environment, then
the right hand side is executed.

The module language has similar rules for identifiers and application.
In this case, the BETA and APP rule have been combined in MODBETA.
Additional rules for declarations are also present. Type declarations are
ignored (TYPEDECL). Values and module declarations (VALDECL and
MoDDECL) are treated similarly to let bindings: the body of the binding
is executed, added to the environment and then the rest of the structure
is executed.

3.3.1 Traces and Printing

Traces allow us to visualize the execution order of programs. In particular,
if we prove that code transformation preserves traces, it ensures that the
execution order is preserved. Traces allow us to reason about execution
without introducing references and other side-effecting operations in our
language, which would make the presentation significantly more complex.

One example of operation using traces is the print constant. Typing
and semantics of print are provided in Figure 3.12. print accepts any
value, prints it, and returns it. From a typing point of view, print has
the same type as the identity: a polymorphic function which returns its
input. We make use of the fact that the CONST typing rule also uses the
instanciation for type schemes. The semantics of print is provided via
the DELTA rule: it returns its argument directly but also emits a trace
containing the given argument.

PRINTTY PRINTEXEC
TypeOf(print) = Va.(a — ) d(print,v) = v, (v)

Figure 3.12: Typing and execution rules for print

We now present an example using print. We assume the existence of the
type int, a set of constant corresponding to the integers and an associated



operation +. We wish to type and execute the expression e defined as
let x = (print 3) in (print (z + 1))

Let us first show that e is of type int. The type derivation is provided
in Example 3.2. The typing derivation is fairly direct: we use the CONST
rule to type print as int — int and apply it to integers with the rule
ApPpP. We can now look at the execution of e, which returns 4 with a trace
(3;4). The execution derivation is shown in Example 3.3. The first step
is to decompose the let-binding. We first reduce (print 3), which can be
directly done with the DELTA rule. This gives us 3 with a trace (3). We
then reduce (print (z+1)) in the environment where x is associated to 3.
Before resolving the application of print with the DELTA rule, we need to
reduce its argument with the App rule. We obtain 4 with a trace (4). We
return the result of the right hand side of the left and the concatenation
of both traces by usage of the LETIN rule, which gives us 4 with a trace
(3;4).

TypeOf(print) > int — int  TypeOf(3) = int

ConsT > print:int — int >3:int >print:int —int Dx+ 1:int
rint:1n in o1n rint:1n in X L 1n
App : >(print 3):int (pl int) > ( 't(-&-l))'tAPP
rin L1 val T :1n rin X o1n
LETIN P P LETIN

>1let x = (print 3) in (print (z + 1)):int
Example 3.2: Typing derivation for e — >e: int

d(print,4) = 4, (4)

{x—3} DELTA

rin _ print = print,() z+1 4,() (print 4) =4, (4)
DELTA w ] {x—3} APP
LET (print 3) = 3, (3) (print (z 4+ 1)) ——=14,(4) LET
let = (print 3) in (print (z + 1)) =4, (3;4)
Example 3.3: Execution derivation for e — e =4, (3;4)
3.3.2 Modules

We now present an example of reduction involving modules. Our example
program P is presented in Example 3.4a. It consists of two declarations:
a module declaration X which contains a single declaration a, and the
return value of the program, which is equal to X.a. It is fairly easy to



see that the program P return a value of type int, hence we focus on
the execution of P, which is presented in Example 3.4b. The derivation is
slightly simplified for clarity. In particular, rules such as EMPTYSTRUCT
are elided. The first step is to apply the PROGRAM and MODULEDECL
rules in order to execute the content of each declaration. The declaration
of X, on the left side, can be reduced by first applying the STRUCT rule in
order to extract the content of the module structure, then VALDECL, to
reduce the declaration of a. These reductions give us the structure value
{a—3}. We now execute the declaration of return. According to the
MODULEDECL rule, we must do so in a new environment containing X:
{X+—{a—3}}. In order to reduce X.a, we must use the QUALMODVAR
rule, which reduces qualified variables. This means we first reduce X,
which according to the environment gives us {a—3}, noted V. We then
look up a in V', which returns 3. To return, we first compose the resulting
structure value from both declaration: {X+—{a—3}} + {return—3}. We
then lookup return in this structure, which gives us 3.

prog
module X = struct let ¢ = 3 end
let return = X.a

end
(a) The program P
VALDECL 3=3,0 MODVAR #
STRUCT let a = 3= {a—3},() X =V ={a—3},() V(a) =3 QUALMODVAR
struct X.a {X—{a—3}} 3 ()
( let a = 3) = {a—3}, () - ~ ’ VALDECL
end let return = X.a % {return—3}, ()
MobDULEDECL MoDULEDECL
(r:o:uletX :_s;uct let a = 3 end) — {Xs{a3}} + {revurn—s3}, )
PROGRAM Stretmm T o PROGRAM

P=3,()
(b) Execution of P

Example 3.4: Example of execution with modules

Why big steps? One might wonder why use a big step semantics with
traces, instead of a small step semantics. Indeed, small step usually
make proofs easier, especially for simulations which we will use on ELIOM



later. A first remark is that modules are not stable by substitution since
(struct ... end).z is not valid (and is problematic to type). Hence we
need to use a semantics with environments and closures. Let us now con-
sider doing one step deep inside a structure using a small step semantics.
The previously evaluated declarations in the structure should be available
in the local environment which mean we would need to rebuild environ-
ments as we explore a context to execute a small step. We would also need
to manipulate partially evaluated structures as we execute declarations.
Furthermore, typing preservation for small steps would be difficult to ex-
press in the presence of abstract types. While this is all possible, big steps
semantics with environments is, by comparison, fairly straightforward.

3.3.3 Notes on Soundness

Soundness properties, which correspond to the often misquoted “Well typed
programs cannot go wrong.”, have been proven for many variants of the
ML language. Unfortunately, stating and proving the soundness property
for big step semantics and ML modules requires a fairly large amount of
machinery which we do not attempt to provide in this thesis. Instead, we
give pointers to various relevant work containing such proofs.

Soundness for a small step semantics of our expression language is pro-
vided in Wright and Felleisen [1994]. At a larger scale, Owens [2008] proves
the soundness of a small step semantics for a very large portion of the
OCAML expression language using the Locally Nameless Coq framework
[Aydemir et al., 2008]. Soundness of a big step semantics has been proved
and mechanized for several richer languages [Amin and Rompf, 2017, Tofte,
1988, Owens et al., 2016, Lee et al., 2007, Garrigue, 2009].

Unfortunately, as far as we are aware, soundness of Leroy’s module lan-
guage with higher order applicative functors has not be proved directly
and is a fairly delicate subject. The most recent work of interest is Ross-
berg et al. [2014], which presents an elaboration scheme from ML modules,
including applicative OCAML-style modules, into System Fj,. Soundness
then relies on soundness of the elaboration (provided in the article) and
soundness of System F,,. In this work, the applicative/generative behavior
of functors is decided depending on its purity, which is much more precise
than what is done in OCAML. Notes that our language does not contain
side-effects, which means that our language has a chance to be sound. The



same cannot be said about OCAML in general.

3.4 Related works

Our formalization of the expression language is inspired by Wright and
Felleisen [1994] which contains a small step semantics for the core language
and extensions for references and exceptions, along with their soundness
proofs. A discussion around the various styles of semantics in the context
of traces is also provided by Nakata and Uustalu [2009]. The big step
semantics takes inspiration from Owens et al. [2016] and Amin and Rompf
[2017]. Tofte [1988] also presents a big-step semantics for ML and proves
the soundness in the context of polymorphic type inference. A gentle
introduction to soundness for big step semantics can be found in Siek
[2013].

The landscape of ML modules is extremely rich, we only point to several
key work that are directly relevant. Our module language is almost directly
taken from Leroy [1994, 1995] which is the basis of the OCAML module
language [Leroy et al., 2016]. The SML module system employs a different
mechanism for propagating type equalities based on a sharing annotation
[Milner et al., 1990]. Such annotation does not lend itself immediately to
separate compilation [Swasey et al., 2006]. However, the SML module
system has been (partially) mechanized |Lee et al., 2007]. A thorough
and very instructive comparison between the various modules systems was
done by Dreyer [2005, Chapter 1 and 2].

The module system we presented here is expressed directly in term of the
syntax of the language. This is on purpose for two reasons. First, this is
how it is implemented in OCAML, making it possible to reason both about
the formal system and the eventual implementation. Second, it makes the
various extensions of ELIOM fairly easy to model. In particular, we shall
see that our compilation scheme for ELIOM preserves the typing relation.
Such results would be more delicate to express if the module system were
expressed by elaboration. However, if such constraints were not considered,
Rossberg et al. [2014] define an ML module system, including first class
modules and applicative functors, in term of System F,,. This yields a
simple yet feature-full system that could prove easier to extend.



4 The Eliom programming
language

Write a paper promising salvation, make it a
’structured’ something or a ‘virtual’ something, or
‘abstract’, “distributed’ or ’higher-order’ or ‘applicative’
and you can almost be certain of having started a new
cult.

Edsger W. Dijkstra, My hopes of computing science

We now present the formalization of ELIOM, a high-order applicative lan-
guage for distributed client-server programming with strong support for
abstraction and structured programming through modules'. The goal of
this formalization is not to capture the complete ELIOM language, nor the
larger OCSIGEN framework. Instead, we simply aim to capture the specific
additions to the OCAML language from a typing and execution perspec-
tive. As such, we propose a new tierless calculus: ELIOM,. In the ELIOM,
language, programs are series of bindings returning a single client value
which symbolizes the web page showed to the user. In particular, we do
not try to capture the non-terminating aspect of a complete web server, nor
the back-and-forth interactions of a web browser making HTTP requests
to a server.

This might seem like a very limited formalism. However, when a browser
requests a web page, each request follows a similar pattern: an HTTP re-
quest is made, the server executes a specific handler to answer this HT'TP
request and to send a web page and a client program to the browser, this
client program is then executed. The cycle starts again when the user clicks
on another link. Each handler can then be considered as its own individ-
ual program. In the practical context of ELIOM and OCSIGEN, this little

Donations to the Cult of the Oxygenated Camel can be made by joining the OCAML
consortium.
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program is executed in the context of a larger program: the web server,
which can contain some state and be non-terminating. Our formalization,
however, focuses on modeling the typing, execution and compilation of
each little program that are run in handlers’. ELIOM. nevertheless cap-
tures several difficult points of ELIOM, namely the handling of distinct
type universes, the transmission of values between server and client stages,
the detailed semantics, its interaction with side effects, the module system
in the presence of stages, and a compilation process that supports sep-
arate compilation. This should hopefully keep most readers entertained
and give us a stable foothold before attempting an implementation. While
ELioM is an extension of OCAML, ELIOM, is an extension of the sim-
ple ML calculus with modules presented in Chapter 3. We first present
the ELIOM, language in Section 4.1 and its type system in Section 4.2.
We then present the semantics in Section 4.3 before stating various useful
properties in Section 4.4

4.1 Syntax

We now present ELIOM,, a core language for ELIOM. ELIOM, is an ex-
tension of the minimal ML language presented in Chapter 3, with both
an expression and a module language. To emphasis the new elements
introduced by ELIOM, these additional elements will be colored in blue.
This is only for ease of reading and is not essential for understanding the
formalization.

The syntax is presented in Figure 4.4. It extends the syntax presented
in Figure 3.1.

4.1.1 Locations

Before describing the syntax of ELIOMg, let us introduce the notation of
locations. The grammar of locations is given in Figure 4.1. A location
is “a place where the code runs”. There are three core locations: server,
client or base. The base side represents expressions that are “location-less”,
that is, which can be used everywhere. We use the meta-variable ¢ for an
unspecified core location. There is a forth location that is only available

20r, said in another way, ELIOM, is the calculus of modular tierless CGI scripts.



for modules: mixed. A mixed module can have client, server and base
components. We use the meta-variable ¢ for locations that are either m or
one of the core locations. In most contexts, locations are annotated with
subscripts.

We also introduce two relations. ¢ > ¢’, defined in Figure 4.2, means that
a variable (either a value, a type or a module) defined on location ¢ can
be used on a location ¢’. For example, a base type can be used in a client
context. Base declarations are usable everywhere, while mixed declarations
are not usable in base code. ¢ <:¢’, defined in Figure 4.3, means that a
module defined on location ¢ can contain component on location ¢’. In
particular, the mixed location m can contain any component, while other
location can contain only component declared on the same location. Note
that both relations are reflexive: For instance, it is always possible to use
client declarations when you are on the client.

Ci=s]c|b cu=m |/

Figure 4.1: Grammar of locations — £ and ¢

m=s m»c b=s b=c b=m Vse{s,e,m,b} =g

Figure 4.2: “can be used in” relations on locations — £ > ¢/

m<:s m<:c m<:b Vs € {s,¢e,m, b} ¢<:¢

Figure 4.3: “can contain” relation on locations — ¢ <:¢’

4.1.2 Expression language

The expression language is extended with two new constructs: fragments
and injections. A client fragment {{ e }} can be used on the server to rep-
resent an expression that will be computed on the client, but whose future
value can be manipulated on the server. An injection f%uv can be used on
the client to access values defined on the server. An injection must make
explicit use of a converter f that specifies how to send the value. In particu-



Expressions Type Expressions

en= ... Tu= ...
| {{e}} (Fragment) | ay (Type variables)
| f%ov (Injection) | {7} (Fragment types)
fu=pax|z|c (Converter) | 7~»7 (Converter types)
Module Expressions Module types
ma= ... M= ...
| functor,,(X;: M)M | functor,, (X;: M1)Mas
(Mixed functor) (Mixed functor)
Structure components Signature components
d:=1letyx;=c¢ D =valyx;:T
| type, (o)t =7 | type, (ag, )ti =7
| module. X; = M | typey (ag,)ti

| module. X; : M

Figure 4.4: ELIOM,.’s grammar

lar, this should involve a serialization step, executed on the server, followed
by a deserialization step executed on the client. For ease of presentation,
injections are only done on variables and constants. In the implementa-
tion, this restriction is removed by adding a lifting transformation. For
clarity, we sometimes distinguish injections per se, which occur outside of
fragments, and escaped values, which occur inside fragments.

The syntax of types is also extended with two constructs. A fragment
type {7} is the type of a fragment. A converter type 75~ 7. is the type of
a converter taking a server value of type 75 and returning a client value of
type 7.. All type variables oy are annotated with a core location ¢. There
are now three sets of constants: client, server and base.

4.1.3 Module language

The main change in the module language of ELIOM. is that structure
and signature components are annotated with locations. Value and type



declarations can be annotated with a core location ¢ which is either b,
s or c¢. Module declarations can also have one additional possible lo-
cation: the mixed location m. Only modules on location m can have
subfields on different locations. We also introduce mixed functors, noted
functor,, (X : M)M, which body can contain both client and server dec-
larations. A program is a list of declarations including a client value dec-
laration return which is the result of the program.

4.2 Type system

Judgments are now annotated with a location that specifies where the given
code should be typechecked. Judgments on the expression language can
accept any core location ¢ while module judgments accept mixed locations
¢. We note TypeOfy(c) the type of a given constant ¢ on the location
{. Binding in typing environments, just like in signatures, are annotated
with a location. The first three kind of bindings, corresponding to the core
language, can only appear on core locations: s, ¢ or b. Modules can also be
of mixed location m. Names are namespaced by locations, which means it
is valid to have both a client and a server value with both the same name.

4.2.1 Expressions

The new typing rules for expressions are presented in Figures 4.5 to 4.7.
We introduce two typing rules for the new constructions. Rule FRAGMENT
is for the construction of client fragments and can only be applied on the
server. If e is of type 7 on the client, then {{ e }} is of type {7} on the
server. Rule INJECTION is for the communication from the server to the
client and can only be applied on the client. If e is of type 75 on the server
and f is of type 75~ 7. on the server, then f%e is of type 7. on the client.
Since no other typing rules involves client fragments, it is impossible to
deconstruct them.

The last difference with usual ML rules are the visibility of variable.
As described earlier, bindings in ELIOM,,, are located. Since access across
sides are explicit, we want to prevent the use of client variables on the
server, for example. In rule VAR, to use on location ¢ the variable v which
is bound on location ¢, we check that ¢ = ¢, defined in Figure 4.2, which
means that the definition on ¢ can be used in ¢. Base elements b are



usable everywhere. Mixed elements m are usable in both client and server.
Type variables are also annotated with a location and follow the same
rules. Using type variables from the client on the server, for example, is
disallowed.

The validity judgement on types presented in Figure 4.6 is extended
to check that locations are respected both for type constructors and type
variables. This judgement is used in type declaration, which are presented
in the module system.

Converters

To transmit values from the server to the client, we need a serialization for-
mat. We assume the existence of a type serial in Const, which represents
the serialization format. The actual format is irrelevant. For instance, one
could use JSON or XML.

Converters are special values that describe how to move a value from the
server to the client. A converter can be understood as a pair of functions. A
converter f of type 75 ~ 7. is composed of a server-side encoding function of
type 7s — serial, and a client-side decoding function of type serial — 7.
We assume the existence of two built-in converters:

e The serial converter of type serial ~» serial. Both sides are the
identity.
e The frag converter of type Va,.({ac} ~ ac).

Type universes

It is important to note that there is no identity converter (of type Va.(a ~~ ).
Indeed the client and server type universes are distinct and we cannot
translate arbitrary types from one to the other. Some types are only avail-
able on one side: database handles, system types, JAVASCRIPT API types.
Some types, while available on both sides (because they are in base for
example), are simply not transferable. For example, functions cannot be
serialized in general. Another example is file handles: they are available
both on the server and on the client, but moving a file handle from server
to client seems adventurous.

Finally, some types may share a semantic meaning, but not their actual
representation. This is the case where converters are used, as demonstrated



Common rules
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in Section 2.3.

Mixed datatypes

In Sections 3.2.1 and 3.2.2, we saw that the version of ML we consider
supports an interesting combination of three features: abstract datatypes,
parametrized datatypes and separate compilation at the module level.
ELIOM,, as an extension of ML, also supports these features. These three
features have non-trivial interactions that need to be accounted for, in
particular when introducing properties on types, such as locations.

Let us consider the module shown in Example 4.1. We declare a server
datatype t with two parameters and we hide the definition in the signa-
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ture. We now want to check that (t1l, t2)t is a correct type expressions.
However, without the type definition, we don’t know if t1 and t2 are base,
client or server types. In order to type check the type sub-expressions, we
need more information about the definition of t. The solution, much like
variance, is to annotate type variables in datatypes with extra information.
This is done in the syntax for type declarations given in Figure 4.4. Each
type parameters is annotated with a location. Type variables can only be
used on the right location. This ensures proper separation of client and
server type variables and their proper usage.

module M : sig
type%server (
end = struct end = struct
type%server ('a, 'b) t = type%server (’'a[@client], 'b) t =
"a fragment * 'b 5 'a fragment * 'b
end ¢ end
(a) Incorrect abstract datatype (b) Correct abstract datatype

module M : sig
type%server (’'a[@client], 'b) t

’

a, 'b) t

W N e

Example 4.1: A module with an abstract datatype.
Example 4.1a does not exposes information about acceptable sides for 'a
and "b. In Example 4.1b, annotations specifying the side of type variables
are exposed in the interface.

4.2.2 Modules

We now detail ELIOM’s module system. In the expression language, loca-
tion transitions can only happen in very specific constructions: fragments
and injections. This allow us to keep most of the ML type system un-
changed. This is not the case anymore for modules: we allow users to
create base, client and server modules, but also mixed modules that can
contain base, client and server declarations, including other modules. This
means we need to track locations quite precisely.

We first introduce the various feature of our module system along with
some motivating examples. We then detail how those features are enforced
by the typing rules.



Base location and specialization

In Section 2.4, we presented an example where a base functor Map.Make,
is applied to a client module to obtain a new client module. As Map.Make
is a module provided by the standard library of OCAML, it is defined on
location b. In particular, its input signature has components on location
b, thus it would seem a module whose components are on the client or the
server should not be accepted. We would nevertheless like to create maps
of elements that are only available on the client. To do so, we introduce
a specialization operation, defined in Figure 4.8, that allows to use a base
module in a client or server scope by replacing instances of the base location
with the current location.

The situation is quite similar to the application of a function of type
Ya.ao — « to an argument of type int: we need to instantiate the function
before being able to use it. Mixed modules only offer a limited version
of polymorphism for locations: there is only one “location variable” at a
time, and it’s always called b. The specialization operation simply rewrites
a module signature by substituting all instances of the location b or m
by the specified ¢ or s location. Note that before being specialized, a
module should be accessible according to the “can be used” relation defined
Figure 4.2. This means that we never have to specialize a server module on
the client (or conversely). Specialization towards location b has no effect
since only base modules are accessible on location base. Specialization
towards the location m has no effect either: since all locations are allowed
inside the mixed location, no specialization is needed. Mixed functors are
handled in a specific way, as we see in the next section.

Mixed Functors

Mixed functors are functors declared in a mixed scope. We note

functor,,(X;: M)M the mixed functor that takes an argument X; of type
M and return a module M. They can contain both client and server decla-
rations (or mixed submodules). Mixed functors and regular functors have
different types that are not compatible. We saw in Section 2.6.2 an exam-
ple of usage for mixed functors. Mixed functors have several restrictions
compared to regular functors which we now detail using various examples.



Specialization A naive implementation of specialization of mixed func-
tors would be to specialize on both side of the arrow and apply the resulting
functor. Let us see on an example why this solution does not work. In
Example 4.2, the functor F takes as argument a module containing a base
declaration and uses it on both sides. If the type of the functor param-
eter were specialized, the functor application in Example 4.2b would be
well-typed. However, this makes no sense: M.y is supposed to represent a
fragment whose content is the client value of b, but this value doesn’t exist,
since b was declared on the server. There would be no value available to
inject in the declaration of y'.

The solution here is that specialization on mixed functors should only
specialize the return type, not the argument.

module%mixed F (A : sig val b : int end) = struct
let%server x = A.b
let%server y %client A.b]

end

(a) A mixed functor using a base declaration

module%server M = F(struct let%server b = 2 end)
> let%sclient y' = ~%M.y

(b) An ill-typed application of F

Example 4.2: A mixed functor using base declaration polymorphically

Injections Injections inside client sections (as opposed to escaped values
inside client fragments) are fairly static: the value might be dynamic, but
the position of the injection and its use sites are statistically known and
does not depend on the execution of the program. In particular, injections
are independent of the control flow. We can just give a unique identifier
to each injection, and use that unique name for lookup on the client. This
property comes from the fact that injected server identifiers cannot be
bound in a client section.

Unfortunately, this property does not hold in the presence of mixed func-
tor when we assume the language can apply functor at arbitrary positions,
which is the case in OCAML. Let us consider Example 4.3. The functor F'
takes a structure containing a server declaration x holding an integer and
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returns a structure containing the same integer, injected in the client. In
Example 4.3b, the functor is used on A or B conditionally. The issue is
that the client integer depends both on the server integer and on the local
client control flow. Lifting the functor application at toplevel would not
preserve the semantics of the language, due to side effects. Thus, we avoid
this kind of situation by forbidding injections that access dynamic names
inside mixed functors.

module%mixed F (A : sig val%server x : int end) = struct
let%sclient x' = ~%A.X
end

(a) An problematic mixed functor with an injection

module%mixed A = struct let%server x 2 end
module%mixed B = struct let%server x = 4 end
let%client a =
if Random.bool ()
then let module M
else let module M

I
m ™
==
;. ;.
==
><‘ ><~

(b) A pathological functor application

Example 4.3: Problematic example of injection inside a mixed functor

In order to avoid this situation, we add the constraints that injections
inside the body of a mixed functors can only refer to outside of the functor.
Escaped values, which are injections inside client fragments, are still al-
lowed. The functor presented in Example 4.4a is not allowed while the one
in Example 4.4b is allowed. Formally, this is guaranteed by the MIXED-
FuNCTOR rule, where each injection is typechecked in the outer typing
environment.

Functor application Mixed functors can only be applied to mixed struc-
tures. This means that in a functor application F (M), M must be a structure
defined by a module,, declaration. Note that this breaks the property that
the current location of an expression or a module can be determined syn-
tactically: The location inside F(struct ... end) can be either mixed
or not, depending on F. This could be mitigated by using a different syntax
for the application of mixed functor. The justification for this restriction
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module%mixed F (A:sig val%server x : int end) = struct
let%client y = ~%A.x + 2
end

(a) An ill-typed mixed functor using an injection

let%server x = 3
module%mixed F (A:sig val%server y : int end) = struct

let%sclient z = ~%x
let%server z' = [%client ~%A.y + 1]
end

(b) A well-typed mixed functor using an injection

Example 4.4: Mixed functor and injections

is detailed in Section 4.3.

Type rules

We now review how these various language constructs are reflected in the
rules of our type system. As before, the ELIOM module system is built
on the ML module system. We extend the typing, validity and subtyping
judgments by a location annotation that specifies the location of the cur-
rent scope. The program typing judgments don’t have a location, since a
program is always considered mixed. Most rules are fairly straightforward
adaptations of the ML rules, annotated with locations.

The typing rules MODVAR and QUALMODVAR follow the usual rules of
ML modules with two modifications: We first check that the module we
are looking up can indeed be used on the current location. This is done
by the side condition ¢’ ¢ where ¢ is the current location and ¢’ is the
location where the identifier is defined. This allows, for instance, to use
base identifiers in a client scope. We also specialize the module type of
the identifier towards the current location ¢. The specialization operation,
which was described in Section 4.2.2, is noted |M | and is defined in
Figure 4.8.

There are two new typing rules compared to ML: the rules MIXED-
FuNCTOR and MIXEDAPPLICATION define mixed functor definition and



application. We use INJS(+) which returns the set of all injections in client
declarations.

Subtyping and equivalence of modules

Subtyping rules are given in Figure 4.11. For brevity, we note ¢ <:(s1 > ¢2)
as a shorthand for ¢ <:¢; A ¢<:¢o A ¢1 > <o, that is, both ¢ and ¢ are
valid locations for components of a module on location ¢ and location ¢;
encompasses location ¢». Note that the following holds:

I'».struct valy ¢; : int end <: struct val. ¢; : int end

This is perfectly safe, since for any identifier x; on base, let, x;

always valid. This allows programmers to declare some code on base (and
get the guarantee that the code is only using usual OCAML constructs)
but to expose it as client or server in the module type.

= x; is

(M]p =M (M]m =M

|sig S end|, = sig |S], end [functor,,(X;: M)M’|, = functor,,(X;: M)|M’],
le], =€ |functor (X;: M)M’|, = functor(X;:|M|,)|M'],

val, x; : 7;|S|, when £>.
|S], otherwise

|valp x; : 7; S|, = {

type, (a7 )ti =7; S|, when (-
|S]. otherwise

Ltype, (o)t =T7:S], = {

type, (a7 )ti; [S], when £~

t v tiQS L=
|type, (0%) ] {LS 1. otherwise

module, X, : |[M],;|S]., when ¢t

dule. X; : M;S]|, =
[module J {LSJL otherwise

Where ¢ is either ¢ or s.

Figure 4.8: Module specialization operation — | M |,



e/lp=¢
(sig S end)/p = sig S/p end

(module. X; = M;S)/p =module. X; = M/p;S/p
(type, (ag))ti = 738)/p = type, (ap, )ti = (a")p.t; S/p
(type, (a7, )ti; S)/p = type, (af, )ti = (a")p.t; S/p

S)

)

)

(valy x; : 7;S)/p=valy x; : 7;5/p

(functor (X; : M)M')/p = functor (X; : M)(M'/p(X;))
(functor,, (X; : M)M M /p = functor,,(X;: M)(M /p(Xi))

Figure 4.9: Module strengthening operation — M /p



MoDVAR
(modules X;: M) el =<

', X LMJg
QUALMODVAR STRENGTH
Iw».p:(sig Si;module.s X; : M;S> end) J =< r'ecp: M
LecpX:|Mni—o pn|n € BVe(S1)] s Cecp:M/p

e . M: M rec M <2 M I'» M : functor (X; : M)M’ r'e.My: M
e M:M T My (M) : M'[X; ¢ Ma]

e, M X; ¢ BV,(T) T'; (module, X;: M) we M: M’
I », functor (X; : M)M : functor (X, : M)M’
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MIXEDAPPLICATION
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', struct S end:sig S end I'e.e:e

Figure 4.10: Module typing rules — I'»cm: M



SUBSTRUCT
7 [L;m] — [1;n] Vi € [1;m], I'Dy;...; D¢ Dy < D

I'» (sig Dy;...; D, end) <: (sig Dj;...; D/, end)

Iy, 71T ¢ <:(ly = 49)

Iy (valy, ;1) <: (valy, z; : T2)

Ly, My <: My ¢ <:(s1 > <)
I'» (module;, X;: M) <: (moduley, X; = My)

Ly M, < M, I, (module, X : M))»y M, <: M,
[ », functor (X : My)M, <: functor(X : M) M.

e, M, <: M, [, (module,, X : M.)», M, <: M.,
I'»,, functor,, (X : M,)M, <: functor,, (X : M, M.

['>p, =T ¢ <:(ly = 19)
I'»c(type,, (aZ )t = 11) <: (typey, (aZ)ti =T9)

S <:(€1 - 52)

FDgQ(OéZ)ti%T §<:(€1 >-€2)
Ta(typey, (af ) <: (typey, (af )t = 7)

S <:(€1 - 52)
T (type,, (af )t — 1) <: (type, (af )t

Figure 4.11: Module subtyping rules — T'». M <: M’



4.3 Interpreted semantics

While ELiOM, just like OCAML, is a compiled language, it is desirable to
present a semantics that does not involve complex program transformation.
The reason is two-fold: First, this simple semantics should be reasonably
easy to explain to users. Indeed, this semantics is the one used to present
Eriom in Chapter 2. However, we must also show that this semantics is
correct, in that it does actually corresponds to our compilation scheme.
This is done in Section 5.4. As presented in Chapter 2, ELIOM execution
proceeds in two steps: The server part of the program is executed first.
This creates a client program, which is then executed.

Let us first introduce a few notations. Generated client programs are
noted p. Server expressions (resp. declarations) that do not contain in-
jections are noted € (resp. D). Values are the same as for ML: constants,
closures, structures and functor closures. We consider a new class of iden-
tifiers called “references” and noted in bold, such as r or R. We assume
the existence of a name generator that can create arbitrary new fresh r
identifiers at any point of the execution. References are used as global
identifiers that ignore scoping rules. References can also be qualified as
“reference paths”, noted X.r. This is used for mixed functors, in partic-
ular. We use 7 to note the global environment where such references are
stored.

We now introduce a new reduction relation, =, which is the reduction
over ELIOM constructs on side ¢. The notation = actually represents sev-
eral reduction relations which are presented in Figures 4.13, 4.16 and 4.17.
Four of these relations reduce the server part of the code and emit a client
program. We note e £ v, 1, 6 the reduction of a server expression e inside
a context ¢ in the environment p. It returns the value v, the client program
w and emits the trace . The context ¢ can be either base (b), server (s),
server code inside client contexts (¢/s) or server code inside mixed contexts

(m). We also have a client reduction, noted e ply—-in v, § which reduces

a client expression e inside an environment p, returns a value v and emits
a trace 0. It also updates a global environment from v to ~'.

Note that the first family of relation executes only the server part of
a program and returns a client program, which is then executed by =-..
This is represented formally by the PROGRAM rule. In order to reduce an



EL1OM program P, we first reduce the server part using =,,,. This returns
no value and a client program g which we execute. We now look into each
specific feature in greater detail

4.3.1 Generated client programs

Let us first describe evaluation rules for generated client programs. Gener-
ated client programs are ML programs with some additional constructions
which are described in Figure 4.12. The new evaluation rules are presented
in Figure 4.13. The construction bind env f binds the current accessible
environment to f in the global environment . This is implemented by the
BINDENV rule. bind r = e with f computes e in the environment previous
associated to f. The results is then stored as r in . This construction is
also usable for module expressions and is implemented by the BIND and
BIND,,, rules. All these constructions also accept paths of references such
as R.f.

The new bind constructs are similar to the ones used in languages with
continuations in the catch/throw style. Instead of storing both an envi-
ronment and the future computation, we store only the environment. This
will allow us to implement closures across locations, in particular the case
where fragments are used inside a server closure.

The client reduction relation also inherits the ML rules (rule CLIENT-
CODE). In such a case, the global environment is passed around following
an order compatible with traces. For example, the LETIN rule for let
expression would be modified like so:

ply=v pH{xv} [V =7
e/ EC’UCO e C'U’QI

(let z=¢" ine) %60,9@0/
Here, €' is evaluated first (since 6 is present first in the resulting traces),
hence it uses the initial environment v and returns the environment +/,
which is then passed along.
In the rest of this thesis, we use f to denote the reference associated to
fragments closures and r to denote the reference associated to a specific
value of a fragment.



p = (X.)'x (Reference path)
D, ::= Dy,

| bind env p (Env binding)

| bind p = e with p’ | bind p = M with p’ (Global binding)

Figure 4.12: Grammar of client programs

BinD BINDENV
P 10T e A Il (Gl D MR g=Llateeelor, ve
(bind p = e with pg; §) 22225 V0@ ¢/ (bind env pr; §) 2225V, 6
BinD,,
’ , ) CLIENTCODE
Y it Jl i i V,0 S=2 (O e VH 27 V', e Inherit the rules
o[ 7—" from ML

(bind p = M with pf;S) =—=.V',0Q¢

Figure 4.13: Semantics for client generated programs — e ——pw;—_w—% v, 6

4.3.2 Base, Client and Server declarations

We now consider the case of base, client and server declarations. The
rules are presented in Figure 4.16. Let us first describe the execution of
complete ELIOM, programs (rule PROGRAM). A program P reduces to a
client value v if and only if we can first create a server reduction of P that
produces no value, emits a client program p and a trace 5. We can then
create a reduction of u that reduces in v with a trace 6.. The trace of the
program is the concatenation of the traces. We see that the execution of
ELioM, program is split in two as described earlier. Let us now look in
more details at various construction of the ELIOM, language.

Base The base reduction relation corresponds exactly to the ML re-
duction relation, and always returns empty programs (rule BASECODE).
When reducing a base declaration in a mixed context, we both reduce the
declaration using =, but also add the declaration to the emitted client
program (rule BASEDECL). As we can see, base declarations are executed
twice: once on the server and once on the client.



Client contexts and injections The goal of the client reduction rela-
tion =/, is not to reduce client programs. It only reduces server code
contained by injections inside client code. It returns a client expression
without injections, a client program and a trace. Since we don’t want to
execute client code, it does not inherit the reduction rules for ML. Given
an injection f%e, the rule INJECTION reduces the server side expression
(f* e) to a value v. We then transform the server value v into a client value
using the | operator presented Figure 4.15. We then returns the client ex-
pression (f¢ |v) without executing it. This expression will be executed on
the client side, to deserialize the value. The value injection operator, noted
J represents the serialization of values from the server to the client and is
the identity over constants in Const;, and references, and fail on any other
values. According to the definition of converters, if f is a converter 75 ~ 7,
then f? is the server side function of type 74 — serial and v should be of
type serial. Since serial is defined on b, the injection of values should
be the identity.

The rule CLIENTCONTEXT defines the evaluation of server expression up
to client contexts. Client contexts are noted Eley, ..., e,] and are defined in
Figure 4.14. A client context can have any number of holes which must all
contain injections. The rest of the context can contain arbitrary ML syntax
that are not injections. Evaluation under a multi-holed context proceed
from left to right. The resulting programs and traces are constructed by
concatenation of each program and trace.

In order to evaluate client declarations, the rule CLIENTDECL uses =/,
to evaluate the server code present in the declaration D. which returns
a declaration without injections D, and a client program u. We then
return the client program composed by the concatenation of the two. We
demonstrate this in Example 4.5. The ELIOM, program is presented on
the left side. It first declares the integer a on the server then inject it on
the client and returns the result. The emitted code, shown in the middle,
contains an explicit call to the int® deserializer while the rest of the client
code is unchanged. The returned value is shown on the right.

let;a=3

— let return = (int® 3) + 1 —
let, return = int%x + 1 m ( )+ ¢

Example 4.5: Execution of a client declaration



E. = [f%e] | e | (Ee E¢) | \x.E¢ | let x = E, in E,
En = M | (Ey: M) | Eyi(Ep) | functor (X;: M)E)y | struct (Ep)”* end
Ep:=D ‘ let. z; = F, ’ module. X; = Eyy

Figure 4.14: Execution contexts for injections — E:|

le=c when ¢ € Consty,
lp=p
v=1 otherwise

Figure 4.15: Injections of values — Jv

Server code and fragments The server reduction relation reduces server
code and emits the appropriate client program associated to client frag-
ments. Since client program are mostly ML programs, it inherits the ML
reduction rules (rule SERVERCODE) where client programs are concate-
nated in the same order as traces. Client fragments are handled by the
rule FRAGMENT. Let us consider a fragment {{ e }}, this evaluation pro-
ceeds in two steps: first, we evaluate all the injections inside the client
expression e using the relation =/, described in the previous section. We
thus obtain an expression without injection € and a client program pu.
The second step is to register € to be evaluated in the client program.
One could propose to simply consider client fragments as values. This
is however quite problematic, as it could lead to duplicated side effects.
Consider the program presented on the left side of Example 4.6. If we
were simply to simply pass fragments along, the print statement would be
evaluated twice. Instead, we create a fresh identifier r that will be globally
bound to € in the client program, as shown in rule FRAGMENT. This way,
the client expression contained inside the fragment will be executed once,
in a timely manner. The execution rule for fragment is demonstrated in
Example 4.6. As before, the ELIOM, program is presented on the left, the
emitted client program in shown in the middle and the returned value is
on the right. Note that both frag® and frag® are the identity function.



bind env f
bind r = (print 3) with f
" let return =
(frag®r) + (frag® r)

lety z = {{ (print 3) }}
let. return =

fraghx + fraghe

= 6,(3)

Example 4.6: Execution of a fragment containing side-effects

Closures and fragments In the client program above, we also use a ref-
erence f and the bind env construct. To see why this is necessary, we now
consider a case where fragments are used inside closures. This is presented
in Example 4.7. The ELIOM, program, presented on the left, computes
1+ 3+ 2 on the client (although in a fairly obfuscated way). We first de-
fine the client variable a as 1. We then define a server closure f containing
a client fragment capturing a. We then define a new variable also named
a and call (f 3), inject the results and returns. When evaluating the defi-
nitions of f, since it contains syntactically a client fragment, we will emit
the client instruction bind env f, where f is a fresh identifier. This will
capture the local environment, which is {a—1} at this point of the client
program. When we execute (f 3), we will finally reduce the client fragment
and emit the (bind r = (int® 3) + a with f) instruction. On the client,
this will be executed in the f environment, hence a is 1 and the result is
4. Once this is executed, we move back to the regular environment, where
a is 2, and proceed with the execution.

Thanks to this construction, the capturing behavior of closures is pre-
served across location boundaries. The bind env construct is generated by
the SERVERDECL rule. FRAGS(D;) returns the fragments syntactically
present in D;. For each fragment, the local environment is bound to the
associated reference.

let.,a=1 leta=1

lets f oz ={{ int%z +a }} bind env f

let. a =2 =, let a =2 = 6,()
lets y = (f 3) bind r = (int® 3) + a with f

let. return = fraghy + a let return = (fragr)+a

Example 4.7: Execution of a fragment inside a closure



Fragment annotations In the previous examples, we presented the server
reduction rules where, for each syntactic fragment, a fresh reference f is
generated and bound to the environment. In the rest of this thesis, we will
simply assume that all fragments syntactically present in the program are
annotated with a unique reference. Such annotation is purely syntactic
and can be done by walking the syntax tree of the program. Annotated
fragments are noted {{ ... }}f.

Mixed structures syntactically present in the program are also anno-
tated in a similar manner with a unique module reference. Annoted mixed
structures are noted struct ... endp.

Server code inside client contexts

INJECTION CLIENTCONTEXT
(f*e)Lov, 1,0 Vi, ei =5 c)s v, i, 0
f%e =p>c/s(fc v), 1,0 Elei, ..., en) éc/s Evi,...,vn], pi1; -5 fon, @; 0;

Server code

FRAGMENT SERVERCODE

Base code

e :p>c/s e, u,0 rfresh Inherit the rules B,JASEC;(?DE
d ; = Wi from ML ===
{{e}}r=sr, (;bind r =€ with f),0
Declarations
BASEDECL v CLIENTDE70L
Dy, V,e,0  S=LEL V6 De=%0)i Dy, S, V)60
Dy; S =L, V+ V' (Dy; '), 0 @6 De; 8§ L5, V, (1; Des 1), 0

SERVERDECL

FRAGS(D.) = {{ e; }}r, D.=2.V,u0 S=L5 V' 1.0

Dy;S=%,, V + V' (bind env fi; u; 1), 0 @6’

PROGRAM
P:p>m()mua'93 /‘L%C vyac
P=Lsv,60,Q0,

Figure 4.16: Semantics for base, client and server sections — e :p>< v, 1, 6



4.3.3 Mixed modules

Let us now describe the reduction relation for mixed modules. The mixed
reduction relation is presented in Figure 4.17 and, just like the server rela-
tion, has for goal to evaluate all the server code and emit a client program
to be later evaluated by the client relation. Mixed modules can be com-
posed of either mixed functors, functor applications or structures. The
mixed relation contains various rules that are similar to the ML reduction
rules for modules. The notable novel aspect of mixed functor is that they
both have a client part and a server part. This is different from client frag-
ments, which only have a client part that can be manipulated on the server
via an identifier. The server part of mixed modules also need to indicate
its client part. In order to do this, each mixed structure will contains an
additional field called Dyn which contains a module identifier. The identi-
fier points to a globally bound module on the client which is the result of
the client-side evaluation.

Let us first demonstrate these features in Example 4.8. In this example,
we declare a mixed module X containing a fragment x and an integer y.
We then declare another mixed module Y containing a submodule. The
structure of the emitted client code mimics closely the structure of the
server code. In particular, the bind operation is nested inside the mixed
module X that is emitted on the client. The exact same names are reused
on the client. We also register each structure in the global environment
using the annotated identifier of the structure. Here, we use the bind con-
struct as a shorthand for bind with that doesn’t change the environment.
The shape of the program is kept intact thanks to the MIXEDMODVAR,
MIXEDQUALMODVAR and MIXEDSTRUCT rules. The first two are simi-
lar to the non mixed version, but the last one deserves some explanation.
First, it prefixes all the fragment references inside the body of the structure.
This is for consistency with functors, as we will see later. It then adds the
Dyn field to the returned structure, as discussed before. Finally, it emits
a bind on the client and returns the module reference. Each structure is
thus bound appropriately, even when nested.

Module identifiers are not used in the present program, but they are
used in the case of mixed functors, as we will see now.



bind X = struct
bind env X.f
bind r =1 with X.f
let y =2+ (fragr)

end

=, module X =X = 3,()

bind Y = struct
module A = X

end

module Y =Y

let return=Y. Ay

module,, X = struct
letsx={{1}}
let, y =2 + fraghz

endyx

module,, Y = struct
module,, A =X

endy

let. return = Y. A.y

Example 4.8: Execution of mixed modules

Mixed functors, injections and client side application Before exposing
the complex interaction of mixed functors and fragment, let us illustrate
various details about mixed functors in Example 4.9. The server code
proceed in the following way: we first define a server variable x followed
by a mixed functor F' containing an injection. We then define a mixed
module Y and executes on the client the functor application F(Y).

First, let us recall that injections inside mixed functors can only refer to
elements outside the functor. This means that injections inside functors
can be reduced as soon as we consider a functor. In particular, we do not
wait for functor application. This can be seen in the MODCLOSURE rule
which returns a functor closure on the server side and emit the client part
of the functor on the client side. We then take the client part of the body
of the functor (noted M|.) and applies the =/, reduction relation, which
executes injections inside client code. In this example, it results in the
injection int%z being resolved immediately in the client-side version of
the functor.

Mixed functor application can be done in client and server contexts.
When it is done in a client context, we simply call the client-side definition
and omits the server-side execution completely. Hence we can simply emit
the client-code F(Y'). Execution is done through the usual rules for client
sections. This is always valid since each mixed declaration emits a client
declaration with the same name and the same shape.



lets x =1 module F'(X : M) = struct

module,, F'(X : M) = struct let b= X.a+ (int® 1)
let. b= X.a + int%z endy

endy bind Y = struct

module,, Y = struct =, leta=2 = 3,()
let.a =2 end

endy module Y =Y

module, Z = F(Y) module Z = F(Y)

let, return = Z.b let return = Z.b

Example 4.9: Execution of mixed functors with injections

Mixed functors and fragments The difficulty of the reduction of mixed
functor containing fragments is that the server-side application of a mixed
functor should result in both server and client effects. This makes the
reduction rules for mixed functor application quite delicate. We illustrate
this with Example 4.10. In this example, we define a functor F' contains
only the server declaration x. The argument of the functor simply contains
two integers, one on the server and one on the client. In the fragment bound
to x, we add the two integers (using an escaped value). The interesting
aspect here is that the body of the client fragment depends on both the
client and the server side of the argument, even if there is no actual client
side for the functor F'. The rest of the program is composed of a simple
mixed module Y and the mixed functor application F(Y').

The first step of the execution is to define the client side part of F' and
Y, as demonstrated in the previous example. In this case, since F' only
contains a server side declaration, the client part of the functor returns an
empty structure. We then have to execute F(Y'). This is done with the
STRUCTBETA rule. When reducing a mixed functor application, we first
generate a fresh identifier (Ryz here) and prefix all the fragment closure
identifiers. We then evaluate the body of the functor on the server, which
gives us both the server module value and the generated client code. In
this case, we simply obtain the binding of ry. Note that this reference
is not prefixed by Rz since it is freshly generated at runtime. If the
functor was applied again, we would simply generated a new one. In order
for functor arguments to be properly available on the client, we need to



introduce additional bindings. For this purpose, we lookup the Dyn field
for each module argument and insert the additional binding. In this case,
module X =Y. This gives us a complete client structure which we can
bind to Ryg.

bind env F
module F(X : M) = struct end

1 F(X: =
module,, F'( M) = struct bind Y = struct

R let a =4
{{ X.a+ int%X.b }}g, o
endp
module,, Y = struct module ¥ =Y
letc,a =14 .
let; b=2 =>m bind RZ = struct =, 6, <>
endy module X =Y

bind env Ry.fy
bind rx = Y.a + (int® 2)
with Ryg.fx
end with F
module Z = F(Y)

module,, Z = F(Y)

let. return = frag%Z.x

let return = (frag® ry)
Example 4.10: Execution of mixed functors with fragments

We see here that the body of functors allows to emit client code in a dy-
namic but controlled way. Generated module references used on the client
are remembered on the server using the Dyn field while closure identifiers
ensure that the proper environment is used. One problematic aspect of
this method is that it leads to two executions of the client side. We shall
discuss this in Section 5.5.



Mixed module expressions

MIXEDSTRUCT MixEDMODVAR
Slfi— X&), =0V, 0,0 V' =V + {Dyn—>X} p(X)=V
struct S endx ==,, V', X,bind X = struct 1 end, 0 X,V X,e, )

Aprp

M=, V. Me,i,0 M =L, V' M0 VIV, V' 6
M(M") L5, V"', Me(M?), s ' 1", 0 @' @6

STRUCTBETA
R fresh Vy= functorm(pl)(Xi :M;);struct S endr
Vibyn) =R:  S[fi — R, 22Vl g

bind R = struct
(module X; = Ry;);

Vi(Vh) ... (Vo) =, V + {Dyn—R}, b ,0
end with F
NOTSTRUCTBE:FA
V' = functory (p')(Xi: M;)iM MIXEDQUALMODVAR
X Vi)
M P +H{Xi— Vi) Vi 11,0 =L V1,0 EmMmpPTY
V() ... (Vi) =0 Vi, 1, 6, p.X =L, V(X),p.X, 1,0 e%,.{},5 0
MoDCLOSURE

M‘c éc/s M7 1y 0
functor,, (X : M)M £, functor,,(p)(X : M)M, functor (X : M|.)M, p,

Mixed declarations

MIixEDMODDECL
MixedStructlds(M) = F; M =2, V, M, 4,0 §=LE22V e gy

module,, X = M; S=%,, {X—=V}+ V', (bind env F;; yu;module X = M /), 0 @6’

Figure 4.17: Semantics for mixed modules — M =p>§ Vi, 0



4.4 Results on locations

The behavior of locations and specialization in the presence of the various
language constructs is not obvious, even with various examples. We now
present various elementary results related to locations that should make
the behavior of some constructions easier to grasp and inform the design of
our compilation scheme. Let us note My, the substitution on locations
in an ELIOM module type M.

Proposition 1. Given an ELIOM module type M and a location £ €
{b,c, s}, if =, M, then [ M|, = M.

Proof. By definition of <:; M can only contain declarations on £. This
means that, by reflexivity of >, only specialization rules that leave the
declaration unchanged are involved. O

Proposition 2. Given an ELIOM module type M and a location ¢ € {c, s},
if T ':b M, then {MJ[ = M[b»—>£]-

Proof. We remark that for all £ € {¢, s}, b>¢. Additionally, mixed func-
tors cannot appear on base (since m % b). We can then proceed by induc-
tion over the rules for specialization. ]

4.4.1 Relation between ML and Eliom

ELIOM is an extension of ML. However, we also want ELIOM to be well
integrated in its host language. We now detail the relation between ML
and ELIOM. In particular, we show that ML can be completely embedded
in ELIOM without changes.

Given an ML module m, we note mpr,¢ the ELIOM module where
all the module components have been annotated with location ¢. Given
en ELIOM module m, we note m_,\,) the ML module where all the lo-
cation have been erased. We extend these notations to module types and
environments.

Proposition 3. Given ML type 7, expression e, module m and module



type M and locations ¢, ¢

'L = F[ML»—)Z’} FeT Where ¢ = ¢
Iempe:m = Dvpoeibee: T Where ¢/ = ¢
reMM = F[ML»—}Z’] =y M[ML»—)E] Where ¢/ = ¢

'y MM — F[ML»—M’} | M[ML'—M] : M[ML*—)Z] Where ¢/ = ¢

Proof. We remark that each syntax, typing rule or well formedness rule for
ML has a direct equivalent rule in ELIOM. We can then simply rewrite the
proof tree of the hypothesis to use the ELIOM type and well-formedness
rules. We consider only some specific cases:

e By Proposition 1 and since the modules are of uniform location, the
specialization operation in VAR and MODVAR are the identity.

e The side conditions ¢ <: ¢ are always respected since the modules are
of uniform location and by reflexivity of <:.

e The side conditions ¢ = ¢ are respected by hypothesis. O

Proposition 4. Given ML type 7, expression e, module m and module
type M:

TEy7 = Dpup FuL T ey M = Tmr) Fvn Mo
I'bpe:7 = F[»—)ML] pmpe:7T L'y M: M — F[HML} > ML M[HML}3M[»—>ML:

Proof. We first remark that the following features are forbidden in the base
part of the language: injections, fragments, mixed functors and any other
location than base. The rest of the language contains no tierless features
and coincides with ML. We can then proceed by induction over the proof
trees. O

Proposition 5. Given an ML module M (resp. expression €), an execu-
tion environment p, a location ¢, a value V' (resp. v) and a trace 0:

14 P[ML+—¢]
M=V,0 < MpnpL-g=——¢VML-¢:¢E,0

P PIML—¢]
== 0,0 <= MLy =70 VML~ € 0



Furthermore, given an ML program P, an execution environment p, a
value v and a trace 6:

PLy o — Pivres Lo, UIMLes]» 0 L € {c, s}

P=L0,0 <= Pppoy =2 gy, 0 Q0

Proof. Let us first note that the ML reduction relation is included in the
base, the server and the client-only relations. Additionally, the considered
programs, modules or expressions can not contain fragments, injections
or binds. The additional rules in the server and client-only relations are
only used for these additional syntactic constructs. For the first three
statements, we can then proceed by induction. For the last statement,
we remark that base code is completely copied to the client during server
execution. Using rule PROGRAM, we execute the program twice, which
returns the same value but duplicates the trace. O

Theorem 2 (Base/ML correspondance). ELIOM modules, expressions and
types on base location b correspond exactly to the ML language.

Proof. By Propositions 3 to 5. O

Thanks to Theorem 2, we can completely identify the language ML and
the part of ELIOM on base location. This is of course by design: the base
location allows us to reason about the host language, OCAML, inside the
new language ELIOM. It also provides the guarantee that anything written
in the base location does not contain any communication between client
and server. In the rest of the thesis, we omit location substitutions of the
form |nvpLosp and oML

Proposition 3 also has practical consequences: Given a file previously
typechecked by an ML typechecker, we can directly use the module types
either on base, but also on the client or on the server, by simply annotating
all the signature components. This give us the possibility, in the implemen-
tation, to completely reuse compiled objects from the OCAML typechecker
and load them on an arbitrary location. In particular, it guarantees that
we can reuse pure OCAML libraries safely and freely.



4.4.2 Notes on soundness

We do not give a complete proof of soundness for ELIOM.. One of the
reason is that a soundness proof for our version of ML is already out
of the scope of this thesis (See Section 3.3.3). The ELIOM. semantics is
mostly implemented in terms of the ML one. Here we will assume that the
ML semantics is sound, and give some arguments towards the soundness
of ELIOM,.

Server and Base semantics Since base code exactly corresponds to ML
code, and can not depend on server and client identifiers, the soundness
of the base reduction relation is equivalent to the soundness of ML. The
server reduction relation only adds the FRAGMENT rule. If a fragment is
well typed and the various injection can be reduced, it is easy to see that
this rule always applies. Since references r are opaque values on the server
and can only be used in injections, they do not compromise the soundness
of the server reduction relation.

Client emitted code In our presentation, we do not give typing rules for
the bind env and the bind with constructs. Such typing rules can simply
be given by typing f; references similarly to environments: with a module
type. With this addition, it should be possible to show that client emitted
programs are always well typed. We can then rely on the soundness of
ML equipped with bind. The difficult point here are fragments, due to
the delayed nature of the bind constructs. However, the content of a
fragment is always executed in an environment with a type compatible
with its typing environment, which should ensure correctness.

Mixed modules The client-side behavior of a mixed module is fairly easy
to model, since it is equivalent to a client module. The server-side behavior
is mostly the same as the one of a pair composed by a server-side module
and a fragment containing a client-side module. As such, the soundness
arguments should be the same that the one used for fragments.



5 Compilation of Eliom programs

In Chapter 4, we gave a tour of the ELIOM, language from a formal per-
spective, providing a type system and an interpreted semantics. ELIOM,
however, is not an interpreted language. The interpreted semantics is here
both as a formal tool and to make the semantics of the language more
approachable to users, as demonstrated in Chapter 2. In the implementa-
tion, ELIOM programs are compiled to two programs: one server program
(which is linked and executed on the server) and a client program (which
is compiled to JAVASCRIPT and executed in a browser). The resulting pro-
grams are efficient and avoid unnecessary back-and-forth communications
between the client and the server.

Description of the complete compilation toolchain, including emission of
JAVASCRIPT code, is out of scope of this thesis (see Vouillon and Balat
[2014]). Instead, we describe the compilation process in term of emis-
sion of client and server programs in an ML-like language equipped with
additional primitives. Hence, we present the typing and execution of com-
piled programs, in Section 5.1 and the compilation process, in Section 5.2.
However, we also want to ensure that the interpreted semantics, which is
explained to users, corresponds to the compiled semantics'. This is done
in Section 5.4. Finally, we discuss the design of mixed functors from a
compilation perspective in Section 5.5.

5.1 Target languages ML and ML,

We introduce the two target languages ML, and MLg as extensions of
ML. The additions in these two new languages are highlighted in Fig-
ure 5.1. Typing is provided in Section 5.1.5. The semantics is provided in
Section 5.1.6. As before, we use globally bound identifiers, which we call

!Thus, the main result of this chapter is that you do not need to read it to understand
ELIOM. programs!
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“references” and note in bold: r. References can also be paths, such as X.r.
In some contexts, we accept a special form of reference path, noted Dyn.x
which we explain in Section 5.1.4. In practice, these references are imple-
mented with uniquely generated names and associative tables. Contrary to
the interpreted semantics, references are also used to transfer values from
the server to the client and can appear in expressions. A reference used
inside an expression is always of type serial.

MLg grammar ML grammar

p ::=Dyn.f | (X.)*f p ::=Dyn.f | (X.)*f
(Reference path) (Reference path)
Tu= ... | frag en= ... |x (Reference)
(Fragment type) pf .= | X (Module reference)

vi= ... |r (Reference) p ..—

en= ... | bind p = e (Fragment closure)

| fragment p €” | bind,, p= M
(Fragment call) (Functor fragment)
M= .. | exec () (Fragment execution)

| p.Dyn  (Dynamic field)
| fragment,, p (M™)
(Fragment)
D:= ...
| injection x €
(Injection)
| end () (End token)

Figure 5.1: Grammar for MLg and ML as extensions of ML,

5.1.1 Converters

For each converter f, we note f® and f¢ the server side encoding function
and the client side decoding function. If f is of type 75 ~» 7., then f* is of
type 7s — serial and f€ is of type serial — 7.. We will generally assume



that if the converter f is available in the environment, then f¢ and f® are
available in the client and server environment respectively.

5.1.2 Injections

For injections, we associate server-side the injected value e to a reference
v using the construction injection v e, where e is of type serial. When
the server execution is over, a mapping from references to injected values
is sent to the client. v is then used client-side to access the value.

An example is given in Example 5.1. In this example, two integers
are sent from the server to the client and add them on the client. We
suppose the existence of a base abstract type int, a converter int of type
(int ~~ int) and the associated encoding and decoding functions. The
server program, in Example 5.1a, creates two injections, vi and vg and
does not expose any bindings nor return any values. These injections hold
the serialized integers 4 and 2. The client program, in Example 5.1b,
uses these two injections, deserialize their values, adds them, and returns
the result. Note that injection is not a network operation. It simply
stores a mapping between references (i.e., names) and serialized values.
The mapping generated at the end of the server execution is shown in
Example 5.1c. After the execution of the server code, this mapping is sent
to the client, and used to execute the client code.

injection vy (int® 4); let return = vi— 4
injection vy (int® 2); (int® v1) + (int® va); va > 2
(a) Server program (b) Client program (¢) Mapping of injec-
tions

Example 5.1: Client-server programs calling and using injections

5.1.3 Fragments

The primitive related to fragments also relies on shared references between
the server program and the client program. However, these references allow
to uniquely identify functions that are defined on the client but are called
on the server. To implement this, we use the following primitives:



e In ML structures, bind p = e declares a new client function bound
to the reference p. The function e takes an arbitrary amount of
argument of type serial and returns any type.

e In MLg expressions, fragment p e ... e, is a delayed function appli-
cation which registers that, on the client, the function associated to
p will be applied to the arguments e;. All the arguments must be of
type serial. It returns a value of type frag, which holds a unique
identifier refering to the result of this application.

Here again, none of these primitives are network communication primi-
tives. While the API is similar to Remote Procedure Calls, the execution
is very different: fragment only accumulates the function call in a list, to
be executed later. When the server execution is over, the list of calls is sent
to the client, and used during the client execution. OCAML, and conse-
quently ELIOM, are impure languages: the order of execution of statement
is important. In order to control the order of execution, we introduce two
additional statements: end (), on the server, introduces an end marker in
the list of calls. exec (), on the client, executes all the calls until the next
end token.

Example 5.2 presents a pair of programs which emit the client trace
(2;3;3), but in such a way that, while the client does the printing, the val-
ues and the execution order are completely determined by the server. The
server code (Example 5.2a) calls f with 2 as argument, injects the result
and then calls f with 3 as argument. The client code, in Example 5.2b,
declares a fragment closure f, which simply adds one to its arguments, and
exec both fragments. In-between both executions, it prints the content
of the injection v. During the execution of the server, the list of calls
(Example 5.2¢) and the mapping of injections (Example 5.2d) are built.
First, when fragment f (int® 2) is executed, a fresh reference ry is gen-
erated, the call to the fragment is added to the list and ry is returned.
The injection adds the association vq +— ri to the mapping of injections.
The call to end () then adds the token end to the list of fragments. The
second fragment proceeds similarly to the first, with a fresh identifiers rs.
Once server execution is over, the newly generated list of fragments and
mapping of injections are sent to the client. During the client execution,
the execution of the list is controlled by the exec calls. First, (f 2) emits
(2) and is evaluated to 3, and the mapping r1 +— 3 is added to a global



environment. Then vy is resolved to ry and printed (which shows (3)).
Finally (f 3) emits (3) and is evaluated to 4.

The important thing to note here is that both the injection mapping and
the list of fragments are completely dynamic. We could add complicated
control flow to the server program that would drive the client execution
according to some dynamic values. The only static elements are the names
f and vy, the behavior of f and the number of call to exec (). We cannot,
however, make the server-side control flow depend on client-side values,
since we obey a strict phase separation between server and client execution.

Finally, remark that we do not need the bind env construct introduced
in Section 4.3.1. Instead, we directly capture the environment using clo-
sures that are extracted in advance. We will see how this extraction works
in more details while studying the compilation scheme, in Section 5.2.

let 71 = fragment f (int® 2); bind f = Az.((print (int® x)) + 1);
injection vy (frag® z1); exec ();
end (); let a = (print (frag® vi));
let x5 = fragment f (int® 3); exec ();
end (); let return=a
(a) Server program (b) Client program
{ri—(f 2)};end; Vi— 11

{ro—(f 3)};end;

(c) List of fragments (d) Mapping of injections

Example 5.2: Client-server program defining and calling fragments

5.1.4 Modules

We introduce three new module-related construction that are quite similar
to fragment primitives:

e bind,, p = M is equivalent to bind for modules. It is a client
instruction that associates the module or functor M to the reference
p.



e fragment,, p (R1)...(Rn) is analogous to fragment p e for mod-
ules. It is a delayed functor application that is used on the server
to register that the functor associated to p will have to be applied
to the modules associated to R;. It returns a fresh reference that
represents the resulting module. Contrary to fragment, it can only
be applied to module references.

e p.Dyn returns a reference that represents the client part of a server
module p. This is used for ELIOM, mixed structure that have both
a server and a client part.

The first argument of fragment, fragment,,, bind and bind,, can also
be a reference path Dyn.f, where Dyn is the locally bound Dyn field inside
a module. This allows us to isolate some bound references inside a fresh
module reference. This is useful for functors, as we will now demonstrate
in Example 5.3.

In this example, we again add integers? on the client while controlling
the values and the control flow on the server. We want to define server
modules that contain server values but also trigger some evaluation on the
client, in a similar way to fragments. The first step is to define a module
X on the server and to bind a corresponding module X on the client.
Similarly to the interpreted semantics presented in Section 4.3, we add
a Dyn field to the server module that points to the client module. Plain
structures such as X are fairly straightforward, as we only need to declare
each part statically and add the needed reference. bind,, allows to declare
modules globally.

We then declare the functor F' on the server and bind the functor F on
the client. The server-side functor contains a call to a fragment defined
in the client-side functor. The difficulty here is that we should take care
of differentiating between fragment closures produced by different functor
applications. For this purpose, we use a similar technique than the one
presented in Section 4.3.3, which is to prefix the fragment closure identifier
f with the reference of the client-side module. This reference is available
on the server side as the Dyn field and is generated by a call to fragment,,.
When F' is applied to X on the server, we generate a fresh reference R
and add {R1—F X} to the execution queue. When exec () is called,

2But better! or at very least, more obfuscated.



We introduce the additional binding {Dyn—Rj} in the environment and
apply F to Xg, which will register the Ry.f fragment closure. Since it is
the result of this specific functor application, the closure R;.f will always
add 4 to its argument. The rest of the execution proceed as shown in the
previous section: we call a new fragment, which triggers the client-side
addition 2 + 4 and use an injection to pass the results around.

module X = struct bind,, Xo = struct
module Dyn = Xg; let c=4
let a =2 end;
end;
module F(Y : M,) = struct bind,, F(Y : M,.) = struct
module Dyn = fragment,, F (Y.Dyn); bind Dyn.f =
let b = fragment Dyn.f (int® Y.a); Aa.((int€ a) + Y.o);
end; end;
module Z = F(X);
end (); exec ()
injection vy (frag® Z.b); let return = (frag’ vi);
(a) Server program (b) Client program
(R1—F Xo); Vi T2
{r2—R4.f 2}; (d) Mapping of injections
end

(c) List of fragments

Example 5.3: Client-server program using module fragments

5.1.5 Type system rules

The MLg and ML typing rules are presented in Figures 5.2 and 5.3 as a
small extension over the ML typing rules presented in Section 3.2. Note
that the typing rules for the new primitives are weakly typed and are cer-
tainly not sound with respect to serialization and deserialization. Given ar-
bitrary MLg and ML programs, there is no guarantee that (de)serialization
will not fail at runtime. This is on purpose. Indeed, all these guarantees
are provided by ELIOM itself. MLg and ML are target languages that
are very liberal by design, so that all patterns permitted by ELIOM are



expressible with them. Furthermore, from an implementation perspective.
MLg and ML are simply OCAML libraries and do not rely on further
compiler support. Note that Dyn fields are not reflected in signatures. The
fragment FRAGMENT,, rule does not enforce that the Dyn field is present
in all the arguments. This is enforced by construction during compilation.

5.1.6 Semantics rules

We define two reduction relations as extensions of the ML reduction rules
(see Section 3.3). The =1, reduction for MLg server programs is pre-
sented in Figure 5.4. The =1, reduction for ML¢ client programs is
presented in Figure 5.5. Let us consider a server structure S; and a client
structure S.. A paired execution of the two structures is presented below:

pe | YUY’
>

Sy Lo, Vi, &,¢, 0, Se, € MLe Ve, &, 0,

Let us now detail these executions rules. As with the ML reduction, ps; and
pe are the local environments of values while 65 and 6. are the traces for
server and client executions respectively. V; and V, are the returned values.
Similarly to the interpreted semantics for ELIOM,, the client reduction uses
global environments noted ~.

As we saw in the previous examples, server executions emits two sets
of information during execution: a queue of fragments and a map of in-

FRAGMENT INJECTION
Vi, I'>bmig e; : serial I'bwmi, e:serial
I'bwmr, fragment p e ... e, :frag I'»mi, injection v e:e
FRAGMENT,,
EnD ; .
Vl, FDMLS Di: Mi
T'»mrgend ():e I’ »Mr, module Dyn = fragment,, p p1.Dyn ... p,.Dyn:e

Figure 5.2: Typing rules for MLg

BIND BIND,
ToumL, e: 7 Ty, M: M REFERENCE ExEC

Ie»mi,bindp=e:e I'pmi,bind, p=M:e I'bur,x:serial I'wur, exec ():e

Figure 5.3: Typing rules for MLg



jections. Mapping of injection is a traditional (global) environment where
bindings are noted {v—...}. The queue of fragments is noted £ and con-
tains end tokens end and fragment calls {r—f v;...v,}. Concatenation of
fragment queues is noted +- We now see the various rules in more details.

Injections Injection bindings are collected on the server through the IN-
JECTION rule. When creating a new injection binding, we inject the server-
side value using the injection of value operator, noted Jv and presented in
Figure 4.15. This models the serialization of values before transmission
from server to client by ensuring that only base values and references are
injected. Other kinds of values should be handled using converters explic-
itly.

The injection environment ¢ forms a valid client-side global environ-
ment. When executing the client-side program, we simply assume that ¢
is included in the initial global environment ~.

Fragments and functors On the server, fragments and functors calls are
added to the queue through the FRAGMENT and FRAGMENT,, rules. In
both rules, the reference of the associated closure or functor is provided,
along with a list of arguments. A fresh reference symbolizing the fragment
is generated and the call is added to the queue £. Note that in the case
of regular fragments, the arguments are expressions which can themselves
contains fragment calls. The module rule FRAGMENT,,, is similar, the main
difference being that it only accept module references as arguments of the
call.

Fragment closures and functors are bound on the client through the
BIND and BIND,, rules, which simply binds a reference to a value or a
module value in the global environment . Since bind accepts references
of the form Dyn.f, it must first resolves Dyn to the actual reference. This
is done through the DYN rule.

Segmented execution In MLg and ML programs, the execution of frag-
ments is segmented through the use of the exec ()/end () instructions. On
the server, end instructions are handled through the END rule, which sim-
ply adds an end token to the execution queue £. On the client, we use
the EXEC rule, associated to the FRAG and FRAG,, rules. When exec is



called, the EXEC rule triggers the execution of the segment of the queue
until the next end token. Each token {r—f v;...v,} is executed with the
FRAG rule as the function call (f vy...v,). The result of this function
call is bound to r in the global environment . Similarly, functor calls are
executed using the FRAG,, rule. Note that for functors we also introduce
the Dyn field in the local environment, which allows local bind definitions.
Once all the tokens have been executed in the considered fragment queue,
we resume the usual execution.



INJECTION
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FRAGMENT
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FRAGMENT,,
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fragment,, p p1.Dyn ... p,.Dyn :ﬂ>MLS R, {RHp' R:... Rn} AR O

END , DynN SERVERCODE
S=wmr. V;§,¢,0 p(Dyn) = R Inherit the rules
end (); S =211, V, end+€, ¢, 0 Dyn.f =25\, Ror from ML

Figure 5.4: Semantics rules for MLg— S :p>MLS V,£,(,0
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REFERENCE EXElc . N
() =wv == b0 S ¢ =, V€
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Figure 5.5: Semantics rules for ML~ S, %MLC Vv, ¢, 0



5.2 Compilation

In Section 5.1, we presented the two target languages MLy and ML.. We
now present the compilation process transforming one ELIOM. program
into two distinct MLg and ML programs. Before giving a more formal
description in Section 5.2.2, we present the compilation process through
three examples of increasing complexity.

Injections and fragments Example 5.4 presents an ELIOM, program con-
taining only simple declarations involving fragments and injections without
modules. The ELIOM, program is presented on the left, while the compiled
MLg and ML programs are presented on the right. In this example, a
first fragment is created. It only contains an integer and is bound to a.
A second fragment that uses a is created and bound on the server to b.
Finally, b is used on the client via an injection. The program returns 4.

For each fragment, we emit a bind declaration on the client. The client
expression contained in the fragment is abstracted and transformed in a
closure that is bound to a fresh reference. The number of arguments of the
closure corresponds to the number of injections inside the fragment. Simi-
larly to the interpreted semantics, we use the client part of the converter on
the client. In this case, {{ 1 }} is turned into A\().1 and {{ fragha + 1 }}
is turned into Av.((frag® v) +1). On the server, each fragment is replaced
by a call to the primitive fragment. The arguments of the call are the
identifier of the closure and all the injections that are contained in the
fragment. The fragment primitive, which was presented in Section 5.1.3,
registers that the closure declared on the client should be executed later
on. Since all the arguments of fragment should be of type serial, we ap-
ply the client and server parts of the converters at the appropriate places.
The exec and end primitives synchronize the execution so that the order
of side effects is preserved. When exec is encountered, it executes queued
fragment up to an end token which was pushed by an end primitive. We
place an exec/end pair at each server section. This is enough to ensure
that client code inside server fragment and client code in regular client
declaration is executed in the expected order.

Note that injections, which occur outside of fragments, and escaped val-
ues, which occur inside fragments, are compiled in a very different way.
Injections have the useful property that the use site and number of injec-



tions is completely static: we can collect all the injections on the server,
independently of the client control flow and send them to the client. This
is the property that allows us to avoid communications from the client to
the server.

ELIOM. | MLsg | ML¢
lets a={{1}}; let a = fragment fo (); bind fo = A().1;
end (); exec ();
let, b= {{ frag%a+1 }}; | let b = fragment f1 (frag® a); | bind f; = lv.((frag® v) 4+ 1);
end (); exec ();
let. return = frag%b+ 2; | injection v (frag® b); let return = (frag® v) + 2;

Example 5.4: Compilation of expressions

Sections and modules We now present an example with client and server
modules in Example 5.5. The lines of the various programs have been laid
out in a way that should highlight their correspondence.

We declare a server module X containing a client fragment, a client
functor F' containing an injection, a client functor application Z and finally
the client return value, with another injection. The compilation of the
server module X proceeds in the following way: on the server, we emit
a module X similar to the original declaration but where fragments have
been replaced by a call to the fragment primitive. On the client, we
only emit the call to bind, without any of the server-side code structure.
Compilation for the rest of the code proceeds in a similar manner.

This compilation scheme is correct thanks to the following insight: In
client and server modules or functors, the special instructions for fragments
and injection can be freely lifted to the outer scope. Indeed, the fragment
closure bound in fy can only reference client elements. Since the server X
can only introduce server-side variables, the body of the fragment closure
is independent from the server-side code. A similar remark can be made
about the client functor F: the functor argument must be on the client,
hence it cannot introduce new server binding. The server identifier that
is injected must have been introduced outside of functor and the injection
can be lifted outside the functor.

Using this remark, the structure of the MLg and ML programs is fairly
straightforward: Code on the appropriate side has the same shape as in
the original ELIOM, program and code on the other side only contains calls



to the appropriate primitives.

ELiom,

MLs

MLc¢

modules X = struct
letsa={{2}}
lets b=4

end;

module. F (Y : M) = struct
let. a = Y.b+ int%X.b
end;
module, Z =
F(struct let. b =2 end);
let, return =

fraghX.a + Z.a;

module X = struct
let a = fragment fo ()
let b=4

end;

end ();

injection vg (int® X.b);

injection vi (frag® X.a);

bind fo = A().2;

exec ();
module F(Y : M) = struct
let a = Y.b+ (int® vo)
end;
module Z =
F(struct let b =2 end);
let return =
(frag® vi) + Z.a;

Example 5.5: Compilation of client and server modules and functors

Mixed modules Finally, Example 5.6 presents the compilation of mixed
modules. In this example, we create a mixed structure X containing a
server declaration and a client declaration with an injection. We define a
functor F' that takes a module containing a client integer and use it both
inside a client fragment, and inside a client declaration. We then apply F
to X and use an injection to compute the final result of the program.

The compilation of the mixed module X is similar to the procedure for
programs: we compile each declaration and use the injection primitive
as needed. Additionally, we add a Dyn field on the server-side version
of the module. The content of the Dyn field is determined statically for
simple structures (here, it is Xg). The client-side version of the module
is first bound to Xg using the bind,, primitive. We then declare X as
a simple alias. This alias ensures that X is also usable in client sections
transparently.

For functors, the process is similar. One additional complexity is that
the Dyn field should be dynamically generated. For this purpose, we add
a call to the fragment, , primitive. Each call to fragment,, generates a
new, fresh identifier. We also prefix each call to fragment by the Dyn field.
On the client, we emit two different functors. The first one is called F' and
contains only the client declarations to be used inside the rest of the client
code. It is used for client-side usage of mixed functors. An example with
the interpreted semantics was presented in Section 4.3.3. The other one is



bound to a new reference (here F1) and contains both client declaration,
along with calls to the bind and exec primitives. This function is used
to perform client side effects: when the server version of F' is applied, a
call to F is registered and will be executed when the client reaches the

associated exec call (here, the last one).

ELioMe MLg ML¢
module,, X = struct module X — struct bind,, Xg = struct
lets a =2 module Dyn = Xg; exec ();
let: b =4+ int%a let a = 2; end (); let b =4+ (int® vo)

end;

module,, F(Y : M) = struct
lets c={{ Y }}
letc d=2xY.b

end;

module,, Z = F(X);

let. return =
fraghZ.c + Z.d;

injection vg (int® a);
end;

module F(Y : M) = struct
module Dyn =
fragment,, F1 (Y.Dyn);
let ¢ = fragment Dyn.fy ();
end ();
end;

module Z = F(X);
end ();

injection vy (frag® Z.c);

end;
module X = Xp;

bind,, F1(Y : M) = struct
bind,, Dyn.fo = A().(Y.b);

exec ();
let d=2x%Yb

end;

module F(Y : M) = struct
let d=2xYb

end;

module Z = F(X);
exec ()

let return =
(frag® vi) + Z.d;

Example 5.6: Compilation of a mixed functor

5.2.1 Sliceability

In order to simplify our presentation of mixed functors, both in the slicing
rules and in the simulation proofs, we consider a sliceability constraint
which dictates which programs can be sliced.

A program is said sliceable if mixed structures are only defined at top
level, or directly inside a toplevel mixed functor. We demonstrate this con-
straint in Example 5.7. The program presented on the left is not sliceable,
since it contains a structure which is nested inside a structure in a func-
tor. The semantically equivalent program on the right is sliceable, since
structures are not nested.

We discuss this restriction and explain how to partially relax this re-
striction in Section 5.5.



! . _
module,, F(X : M) = struct module,, Y'(X : M) = struct

module,, Y = struct

end
ond module,, F(X : M) = struct
module,, Y = Y'(X)
end

end

A liceable funct
(a) An unsliceable functor (b) A sliceable functor

Example 5.7: The sliceability constraint

5.2.2 Slicing rules

Given an ELIOM, module M (resp. module type M, structure S, ...) and
a location ¢ that is either client or server, we note (M), the result of the
compilation of M to the location ¢. The result of (M), is a module of ML
and the result of (M), is a module in MLc.

Let us defines a few notation. As before, we use e[a — b] to denote the
substitution of a by b in e. e[a; — b;]; denotes the repeated substitution
of a; by b; in e. We note FRAGS(e) (resp. INJS(e)) the fragments (resp.
injections) present in the expression e. We note (e;); the list of elements
e;. For ease of presentation, we use D (resp. D.) for definitions (resp.
declarations) located on location .

In the rest of this section, we assume that all the considered programs
are well typed and sliceable.

We now describe how to slice the various constructions of our language.
The slicing rules for modules and expressions are defined in Figure 5.6. The
slicing rules for structures and declarations are presented in Figure 5.7.

Base structure and signature components are left untouched. Indeed,
according to Proposition 4, base elements are valid ML, elements. We do
not need to modify them in any way. Signature components that are not
valid on the target location are simply omitted. Signature components that
are valid on the target have their type expressions translated. The trans-
lation of a type expression to the client is the identity: indeed, there are
no new ELIOM, type constructs that are valid on the client. Server types,
on the other hand, can contains pieces of client types inside fragments



Type expressions

({r})s = frag (Tg~>Te)g = (T), — serial

Signature components

(Dp; S), = Dy; (S), (Dg;S), = (S), when ¢ # ¢
=(D),;(S), wheng¢>u

Declarations and Definitions
(type, ti), = type i (type, t; = 1), = type t; = (1),
(val, @y : 7), =val x; : (1), (module; X;: M), =module X;: (M),
(let, z; =€), =let z; =e  (module, X; = M), =module X; = (M),

Module Expressions
(struct S end), = struct (S), end
(M(M)), = (M), ((M'),)
(functor(X;: M)M), = £ nctor(X (M),) (M),
(functor,,(X;: M)M), = functor(X;: (M),) (M),

L

L

Module Type Expressions
(sig S end), = sig (S5), end

L

(functor(X; :M)M’>L = functor(X;: (M),) <M/>L
(functor,,(X;: M)M’') = functor(X;: (M),) <M/>L

Figure 5.6: Slicing — (-),

{7} and inside converters 75~ 7.. Fragments in MLg are represented by
a primitive type, fragment, without parameters. The type of converters is
represented by the type of their server part, which is 7 — serial. Mod-
ule and module type expressions are traversed recursively. Functors and
functor applications have each part sliced. Mixed functors are turned into
normal functors.

Slicing of structure components inserts additional primitives that were
described in Section 5.1. In client structure components, we need to handle
injections. We associate each injection to a new fresh reference noted v.
In MLg, we use the injection primitive to register the fact that the



(Dp; S), = Dv; (S)

L L

<Dm§S>L = <Dm>L ; <S>L

(De; S), = (injection x; (f7 x4);), (S), Where
F%z: = INJS(D.)
(D: S) = D, [fi%;ci — (ff xz)} ; X; is a list of fresh variables.
©(S),
(Ds), [{{ €i }}g — fragment i (f7; az‘,j)] .
(Ds;S), = end 0: i Where

{{ e }}fi =FRAGS(D;,)
Vi, f@j%ai,j = INJS(&;)
(bind Dyn.fi = \T7;.¢: [fi,j%ai,j = (f; gg”)] ;)i Vi,T;,; are fresh variables
(Ds; S), = exec ();
<S>C

(),

I dule Fi(X,, i (Mu)) = struct
modulen Fi(Xi i Mp) = struce\  "odute FilXu i (Mi),) =struct
S _ module Dyn = fragment  F (X;, .Dyn);

endp . encis > s

_ bind,, F(X;, : (My),) = struct (S)_ end;
 module Fi(X;, : (My),) = struct S|. end;

c

module,, F;(X;, : My) = struct
S

endg

module X; = struct
module Dyn = X
<S>S

endp

(module,, X; = struct S endx), =

o _ bind,, X = struct (S)_ end;
(module,, X; = struct S endx), = nodule X; — X: c
_ module X; = (M) _;

(module X; = M) = end (); s

_ module X; = (M) _;
¢ exec ();

(module X; = M)

Figure 5.7: Slicing of declarations — (D)

L



given server value should be associated to a given reference. In ML,
we replace each injection by its associated reference. This substitution is
applied both inside expressions and structures. Note that for each injection
f%x, we use the encoding part f® and decoding part f¢ for the server
and client code, respectively. For server structure components, we apply
a similar process to handle fragments. For each fragment, we introduce a
reference noted f. In MLg, we replace each fragment by a call to fragment
with argument the associated reference and each escaped value inside the
fragment (with the encoding part of the converters). We also add, after the
translated component, a call to end which indicates that the execution of
the component is finished. In ML, we use the bind primitives to associate
to each reference a closure where all the escaped values are abstracted.
We also introduce the decoding part of each converter for escaped values.
We then call exec, which executes all the pending fragments until the
next end (). This allows to synchronize interleaved side effects between
fragments and client components.

Given the constraint of sliceability, a mixed module is either a multi-
argument functor returning a structure, or it does not contain any structure
at all. For each structure, we use the reference annotated on structures, as
described in Section 4.3.2. Mixed modules without structures can simply
be sliced by leaving the module expression unchanged. Mixed module
types are also straightforward to slice. Mixed structures (with an arbitrary
number of arguments) need special care. In MLg, we add a Dyn field to
the structure. The value of this field is the result of a call to the primitive
fragment,, with arguments F and all the Dyn fields of the arguments of the
functor. In ML, we create two structures for each mixed structure. One is
simply a client functor where all the server parts have been removed. Note
here that we don’t use the slicing operation. The resulting structure does
not contain any call to bind and exec. We also create another structure
that uses the regular slicing operation. This structure is associated to F
with the bind,, primitive

5.3 Typing preservation

One desirable property is that the introduction of new elements in the lan-
guage and the compilation operation does not compromise the guarantees



provided by the host language. To ensure this, we show that slicing a well
typed ELIOM, program provides two well typed ML. and MLg programs.

We only consider typing environments I' containing the primitive types
frag and serial i.e., (type, frag) € I' and (type, serial) € I'. We
also extend the slicing operation to typing environments. Slicing a typing
environment is equivalent to slicing a signature with additional rules for
converters. Converters, in ELIOM,, are not completely first class: they are
only usable in injections and not manipulable in the expression language.
As such, they must be directly provided by the environment. We add the
two following slicing rules that ensures that converters are properly present
in the sliced environment:

(val f: 73~ 7.), =val f°: (1), ~ serial

(val f: 73~ 17.). =val f¢:serial~T,

Theorem 3 (Compilation preserves typing). Let us consider M and M
such that I'»,,, M : M. Then (') » (M) : (M), and ('), » (M) : (M)

S S c’ c

Proof. We proceed by induction over the proof tree of I'»,, M : M. The
only difficult cases are client and server structure components and mixed
structures. For brevity, we only detail the case of client structure compo-
nents with one injection.

Let us consider D, such that I'»,,(D,; S):S and INJS(D.) = f%z. We
note x the fresh reference. By definition of the typing relation on ELIOM,
there exists IV and 7, 75 such that T C IV, Iy f i 7~ 7 and IV g2 7.
We observe that there cannot be any server bindings in D., Hence we can
assume IV = I'. This is illustrated on the proof tree below.

I'bgfimg~~>1e I'bga:Ty
. f%2:7c

L'y (De; S):S

By definition of slicing on typing environments, (val f¢: (5), — serial) €
(I'), and (val f¢: serial =) € (I').. By definition of ML, and ML
typing rules, we have (I'), >mr, (f° ) : serial and (I') bwmr, (f€ %) @ 7e.



We easily have that (I'), »mr, injection x (f® x):e, as seen on the
proof tree below.
(val f%: (7s),—serial) € (I'),
() g >MLg £ (T5)g ~» serial () g >MLs @ 2 (Te)g
(') »ML, injection x (f% x):¢e

By induction hypothesis on I', (vale xj : 7¢) by de[f%x — x] 1€ where
v; is fresh, we have
()., (val z; : 7) ML, de[f%x — ] :e. We can then replace the proof
tree of v; by the one of (f¢ x). We simply need to ensure that the envi-
ronments coincide. This is the case since f¢ cannot be introduced by new
bindings. We can then remove the binding of v; from the environment,
since it is unused. We obtain that (I'), w1, de[f%x — (f€ x)]:€ which
allows us to conclude.
(val f¢:serial =) € (I'),

(') .>ML, f€:serial ~ 7. (I') .>ML, X : serial
(D) e>mre (f° %) 7e

(T) > ML Delf%z = (f€ x)];5:S



5.4 Semantics preservation

We now prove that the compilation process preserves the semantics of
ELioM. programs. In order to do that, we show that, given an ELIOM,
program P, the trace of it’s execution is the same as the concatenation of
the traces of (P), and (P),.

First, let us put some constraints on the constants of the ELiOM,., MLg
and ML language:

Hypothesis 1 (Well-behaved converters). Converters are said to be well-
behaved if for each constant ¢ in Const such that TypeOf(c) = 75~~7¢,
then ¢® € Consts and ¢© € Const,.

We now assume that converters in ELIOM., MLy and ML, are well-
behaved. We can then state the following theorem.

Theorem 4 (Compilation preserves semantics). Given sets of constants
where converters are well-behaved, given an ELIOM, program P respecting

the slicability hypothesis and such that P % v, 6 then

{0 3=

(P),==Mm1.(),§,¢. 0 (P).,6——=wmL.v,§,0. 0=0,Q0,

S

5.4.1 Hoisting

In Section 5.2, we mentioned that a useful property of injections and frag-
ments is that they can be partially lifted outside sections. This property
can be used to simplify the simulation proofs. We consider the code trans-
formation that hoists the content of injections out of fragments, client
declarations and mixed functors in a way that preserve semantics. This
transformation can be decomposed in two parts.

Injections We decompose injections inside fragments and client declara-
tions into simpler components. For example, the ELIOM, piece of code
presented in Example 5.8a is decomposed in Example 5.8b by moving out
the application of the converter and leaving only a call to the serial con-
verter. All injections using a converter than is not serial nor frag can
be decomposed in such a way.



Since injections can only be used on variables or constants and that no
server bindings can be introduced inside a fragment, scoping is preserved.
Furthermore, by definition of converters and their client and server compo-
nents, this transformation preserves typing. It also preserves the dynamic
semantics as long as the order of hoisting correspond to the order of evalu-
ation. This can be seen by inspecting the reduction relation for server code
under client contexts =-./,. Finally, it trivially preserves the semantics of
the compiled program since it corresponds exactly to how converters are
decomposed during compilation.

leta=14+2in leta=14+21in
{{ 3+ int%a }} let a' = (int® a) in
{{ 3+ (int® serial%d’) }}

(a) Fragment with injections

(b) Fragment with hoisted injections

Example 5.8: Hoisting on fragments

This allows us to assume that reduction of server code in client context
only uses variable lookup and never leads to any evaluation. In particular,
this will avoid having to deal with the case of fragments being executed
inside the reduction of another fragment (to see why this could happen,
consider the case of a converter of type Va.(unit — {ae}) ~ a).

In the rest of this section, we assume that reductions of the ELIOM, rule
FRAGMENT are always of the following shape:

e éc/s e,¢g, <> where e = e[fz%ﬂ’j,b — ps(xz)]l
{({e}} L, (bindr =), () fi € {serial, frag}

and that reductions of the ELiOM, rule CLIENTDECL are always of the
following shape:

— _ where Dc = Dc[fz%xz — ps(xz)h
D.=£./ De,e, () fi € {serial, frag}

Injections inside mixed modules We also hoist injections completely out
of mixed contexts to the outer englobing scope. For example in the functor



presented in Example 5.9a, we can lift the injection out of the functor, as
show in Example 5.9b. This is valid since injections can only reference
content outside of the functor, by typing. Semantics is similarly preserved
since injections inside functors are reduced immediately when encountering
a functor, as per rule MODCLOSURE in Figure 4.16.

This allows us to assume that the reduction of a mixed module will never
lead to the reduction of an injection.

let; oz =... letsx=...
module,, F'(X : M) = struct let. vy = f%z
let. y = fYx module,, F'(X : M) = struct
end let, y = y’
end

(a) Mixed functor with injec-

tions (b) Mixed functor with hoisted injec-

tions

Example 5.9: Hoisting on mixed modules

5.4.2 Preliminaries

Let us start with some naming conventions. Identifiers with a hat, such
as 7, are related to the compiled semantics. For example, while the server
environment for the interpreted semantics is noted pg, the environment
for the execution of the target language MLg is noted ps. This naming
convention is only for ease of reading and does not apply a formal relation
between the objects with and without hats, unless indicated explicitly.

Remarks about global environments

Let us make some preliminary remarks about global environments in the
ELioM;, client generated programs and in ML.

Given a global environment ~y resulting of =, it contains only two kinds
of references:



e Closure fragments, noted f, which come from the execution of bind env.
The associated value is always a environment (i.e., a signature).

e Fragment values, noted r, which come from the execution of bind with.

In the rest of this section, we consider that we can always decompose global
environments 7y in two parts: a fragment value environment -, containing
all the references r that were produced by bind with and a fragment clo-
sure environment 7 containing only binding of the form {f—p} that were
produced by bind env.

Similarly, given a global environment 4 used in ML.. There are only
three kind of references:

e Closure fragments, noted f, which come from the slicing of syntactic
fragments in the source program. The associated value is always a
closure.

e Fragment values, noted r come from the execution of fragments in
the fragment queue.

e Injections, noted x. The associated values must be serializable, and
hence can only be references or constants in Consty,.

In the rest of this section, we consider that we can always decompose
global compiled environment ¥ into a fragment closure environment 7y, a
fragment value environment 7, and an injection environment (.

Client equivalence

Definition 1 (Client values equivalence). Given v an ELIOM client value,
v an ML value and ¢ an environment of references, v and v are equivalent
under ¢, noted v :Z v’, if and only if they are equals after substitution by
¢: w[¢] =v[C].

We extend this notation to environments and traces.

Definition 2 (Global environment equivalence). We say that an ELioM,
global environment v = 7 U, and an ML global environment 7 =
At U7y U are synchronized if and only if the following conditions hold.



e The reference environments are equivalent: ~,. :2 Y

e The domains of v and 7¢ coincides, and:

— For each f in these environments such that v¢(f) = p and that
() = Azg ... xy.p.€, then the following property must hold.

o~

We must have that p g p and that for all vg,...,v,, Vg,...,0n
such that for all ¢, v; ~¢ v;; then:

133 -

ply—=y 5.0
ML U,

elr; = v;], =——=.v,0 = (\T;.p.e Vg...0n)

(2

with v :Z v and 6 22 0

— For each F in these environments such that v;(F) = p and that
7¢(F) = functor(p)(Y;: M;); M, we have p ~¢ p.

Definition 3 (Fragment closure environment). We consider that 7y is a
fragment closure environment for the ELIOM, server expression eg, noted
FCE(Ay,es), if for each {f—=AT;.p.€'} in 4y, for each {{ e } }¢ in FRAGS(e,)

we have € = e[f;%x; — xil;.

Definition 4 (Functor closure environment). We consider that 7y is a
functor closure environment for the ELIOM, module expression M, noted

FCE(H¢, M), if for each {FHfunctor(ﬁ)(Y}:Mi)ig} in 7y, for each
(struct S endp) in M, we have S = (S) .- Additionally, we require that

7t be a fragment closure environment for each expression contained in S.

In the rest of this section, we use the same notation for both properties.
We extend this notation to server declarations, server values (by looking
under closures) and server environments.

Lemma 1 (Reduction up to equivalence). Given p, p, v = vy Uy, 7 =
A UAr UC, e and € such that:

—~ ~ ply—=y
pip v =7 e[¢] = e[(] e =———>.7,0



Proof. The only difference between ELIOM, client expressions and ML
expressions are the presence of extra references for injections in ML¢. In-
deed, syntactic injections have been removed either by the server execution
or by compilation and bind constructs are only accessible at the module
level. Since we assume that the original expression e and the compiled ex-
pression € are the same up to the injection environment ¢, we can trivially
mimic the execution of e in € by induction. O

Server equivalence

Definition 5 (Server value equivalence). Given v an ELIOM server value,
v an MLg value. We say they are equivalent, noted v ~* v if and only if

v[{{ ei }}¢ — fragment f 7;;|, =¥ where 7; ; = INJS(e;)

We extend this notation to environments and traces.

5.4.3 Server expressions and structures

We first look at server expressions and structures. By definition of the
server reduction relation for ELIOM, the emitted program is a series of
binds.

Lemma 2 (Server expressions are simulable). We consider an ELIOM,
server expression e; the ELIOM. environments ps, p. and v = v¢ U, the
target environment ps, p. and 7 =755 U7, UC.

If the expression e has valid server and client executions:

eis—n v, W, O u%c{},ac
and the following invariants hold:
Pe 22 Pe Ps =2 ps 7=y FCEHy,e) FCE®y, ps)

Then € = e[{{ e; }}¢ + fragment f Z;]. has an equivalent execution.

~ As —~ -~ Ac A*)A7 ~
&=L, D, ey {1, 05 exec (),g.%endM:WMLC g,[],0c
with the following invariants:

7~y FCE®H},v) v~ v 05

12
»
>
vy
)
(e}
12
’ael
)
o



Proof. We consider an expression e; the ELIOM, environments ps, p. and
v = v U~y,; the target environment p, p. and 5 = 7y U7, U (. such that

= Pe 32 Pe Ps =° ps FCE(y,e) FCE®y, ps)

We will proceed by induction over the executions of e and p. The only
case of interest is when the server expression is a fragment.

o Case {{ e }}¢.

We assume that the following executions hold:

ps(Ti) = v;
{{e}}r=2>,r,bind r =€ with f, ()

V(f) =p 7%0 Ve, 0

(bind r =€ with f) %C{} 6.

where € = e[f;%x; — lv;], and v/ = v U {r—wv.}. We have € equal to
fragment f x;...x,.

We first consider the execution of €. We can easily construct the follow-
ing execution.

ps(zi) = s

fragment f z1...7, éMLS r,{r—f |01...l0.},{}, ()

By hypothesis, for each i, v; :% . This gives us that Jv; ~ % ¢ ;.
trivially have that r :% r

Let us now look at the client execution. By client execution of u,
v(f) = p. Since vy =¢ 7, we have {f>Azg...zn.p.€'} €7 and p ~¢ p. Fur-
thermore, since FCE (7, {{ e } }¢), we know that that ¢’ = e[f;%x; — ],

We have by hypothesis that é%c Ve, . Since € = €'[x; — Jv;] and

since for all 7, Jv; :ﬁ J0;, we can use Lemma 1 to build the following



reduction:

; PU{xi—=Vi} | A=A ~

ML U, Oc
~ o~ ~  Pc|A—=H D
AZ1...Tp.pe JUr...JUn MLe U, 6c

~ ~ _Pc|A—=A ~ 7
f lvr... v, ——ML.7, 6

exec (), {r—f |v1...]l0,} %ML

o~

g, ],0c

C

Where 7/ = 7 U {r—?v}. By Lemma 1, we have that v ~ v and 0, ~

f.. The only part that is changed in 7/ and 7' is the fragment reference
environment, hence we easily have that 7' ~¢+/, which concludes. |

o Other cases.

In other cases, we first note that references manipulated inside server code
can only fragment references r. By hypothesis, the same references are
considered before and after compilation. Since the fragment closure envi-
ronment hypothesis ranges over all server expressions, including the one
in closures, it is easy to preserve it during execution. The rest is a very
simple induction. [ |

O

Corollary 1 (Server module declarations are simulable). We consider an
ELioM, server declaration Dg; the ELIOM, environments ps, p. and v =
v¢ Ur; the target environment ps, p. and ¥ =75 U7, U (.

If the expression e has valid server and client executions:

Dés Vo, 0 M%C{}?QC
and the following invariants hold:
Pe 22 Pe s =2° ps y =y FCE(/’%@,D) FCE(’/Y\faps)

Then D = D[{{ ¢; }}¢ — fragment f Zi;); have an equivalent execu-
tion.

D=Ly, V, e, {3,065 exec (), £e+end %MLC &[]0



with the following invariants:

~ ~

A~y FCE®{;,V) VsV 0y ~° 0, Oc ~¢ 0.

5.4.4 Mixed structures

Lemma 3 (Structures are simulable). We consider a slicable structure S,
the ELIOM. environments ps, p. and v = vy U ~y,; the target environment

Ps, Pe and ¥ =7r U5, U (.
If the structure has valid server and client executions:

S =00 Vi, 1, b p=Ll2 V6,
and the following invariants hold:
Pe=¢pe  Ps="ps A=y FCE®H;,S) FCE®y,ps)
then for any &, the compiled structures have equivalent executions

(S), Zonir, Vs oy Cor By (S), Eartie L2020 ) V€',

with the following invariants:

;Y\/ ~C '7/ ‘75 ~5 V. ’0\8 ~5 0,
FCE®#;, V) V. ~%, Ve 0. S

Proof. We consider a slicable structure S; the ELIOM, environments ps, p.
and v = vy U~,; the target environment ps, p. and and 7 = 7y U7, U (.
such that

Pe 2% Pe ps =° ps 7=y FCE®7y,S) FCE®y, ps)
We will now proceed by induction over the execution of S.

e Case S = Dy; S’ — Base declaration.



We assume that the following executions hold:

/
s

Dy, Ve 0, S L V00
Dy; S’ =, Vi + V(D ), 05 @0,

pelv—=y petVe|y=v I o
Db:>6‘/6790 ,u’:>CV 9

crrc

Dy 2222 v, 4V, 6, @),

Let us consider the executions of Dy. By definition of base, it contains

neither injections nor fragments. By Proposition 5, D, L, Vs,e,0s and

D, pelyzy, Vj, 0 both correspond to Dy =2 Vi, €, 0 and Dy =25 V,, £, 0,

respectively. By definition, base fragments can’t be present, hence we also
have FCE(7¢, Vy)

Additionally, the compilation functions are the identity on base, which
mean that (D), and (Dy), contains only ML constructs. The reduction
relation over MLg and ML coincide with the ML one on the ML fragment
of the language. Hence, for any &, we have (Dy), L Ve [ 1,40, 8, and

(Dp), € %MLC V., €,0, with

~

Vo=V, Vel V, 0, =* 6, O =% 0.

20

Let us consider the execution of S” and u. We easily have the following
properties:

Pt Vel po+ Ve Pt Vi ps+ Vs 7=y FCE(®F:,S) FCEGy, ps+ Vs

hence, by induction on the execution of S” and i/, we have

<S,>S %MLS ‘//\;/7 g.a C.; é\; and <SI>C 5 §.+i_£ %

for any &, with

1o
ML¢ ‘/0’67 90

a/ ~C ")// ‘7;/ ~S ‘/s/ é\s ~5 98
FCE(, V) Ve v 0. % 0



We can then build the following derivations:

<Db>s£>MLs ‘/}S7Ha{}>05 <SI>S%MLS ‘75/75074-75;

(Dy; 8", Lnin, Ve + V., 60,0, 0. @0,

—~,

ﬁc+\A,c [FUCe =7’ > 7
N, Ve, &, 0

c

Pc | 7UCe >AUCe

(Dy), , Eotrf L2080y 1y Vi, EattE, Be (97), Eatre
(Do S), , Gotre L0 1 V. 4V, ¢,0. @8

and the following invariants are easily verified:

A~ o Vio+ VI Vo+ V! 0,Q0, ~° 6,Q0,
FCEF} Vs +V)) Vet V.= Vo4V 0,00, ~5 06,00, m

e Case S = Dg: S" — Server declaration.

We assume that the following executions hold:

Do Vi 0, &=L Ve
Dy; S’ £>m Vs + Vslv (bil’ld env fi)i; 3 //7 0s Q@ 9;

(bind env f;); %c{h ()

pe ¥ =7" 1 _pely = 1
M:C‘/C7HC M:@c‘/cjec

IR]

(bind env fi);; s/ %c V.+ V! 6.Qf.

Let us note {{ e; }}f, the fragments syntactically present in Dy. let us
note {{ e; }}g the fragments ezecuted during the reduction of Dy and r;
the associated fresh variables.

We have the following compilations:

(Dyi8), = (D), [{{ e My, — tragnent & Tz, end () ('),
<D3; S’>C = (bind f; = AZjk.€;[fi %o > wig];),; ; exec (); <S'>C

After hoisting, converters can only be the serial or frag. Its server
and client parts are the identity, hence we simply omit them. We also note
that (D,), differs with Dy only on type annotations and type declarations
which are ignored by reduction relations. We note



Dy = (Dy),[{{ e; }} = fragment f; 7;1],.

Let us consider the reduction of (bind f; = A\Z;.¢;);. Let us note e, =
eilfi,j%x; j — x; ]. For any queue &, we have the following reduction:

/ pC "YI_>’Yl — /
AZ1 ... T.€;, E =———=ML, \Ti.Pc-€;, &, <>

3 . _ Pc|71_>71
Vi, bind f; = )\l’i.eg,é—:H>MLc{}7£a (0

(bind f = ATy.¢});, € LTI ()

where 71 =7 and ;41 = 3; U {fi=Az1 ... 2. pe-€}. Let ping be
{fimAz1 ... 2p.pe.€)},. We note 7' = 3,41 = 7 U Ying and ‘i} = Upind-

Since (bind env f;); %c{}, (), we have v/ = v U {fi—>p.},. and
pe =€ pe, we have that ' ~¢ 7. Furthermore, given one of the f; in Vpina,
each fragment annotated with this f; syntactically appear in Dy by unique-
ness of the annotation function. This also holds inside functors, since each
f; will be prefixed by a unique module reference. Hence FCE(?}, D;) and
FCE (:Y\}u Ps)-

We now have all the ingredients to uses Corollary 1 on the execution of
Dg and p. This gives us the following reductions:

~

Do, Voo {10 exec (). &trend L0y (14,
with the following invariants:

A e A FCE(A" V) Ve~V 0, ~° 0, Oc ¢ O

We remark that C " = ( since no injection took place during a server section
and that % ’yf = fyf, by definition of the reduction for exec.

We now consider the execution of S’. The following invariants holds:

Penlpe P+ Vi po+V, 3"=4" FCER},S) FCEF}p,+Vs)



. . . st Vs - A
By induction on the execution of S" and y/, we have (S’), %MLS |2 SN

and (S"),., & ++¢ Pl ML ‘/}C/,f',é\é where
ﬁ/// ~C 7/// "/\;/ ~5 Vs, é\; ~S 0;
FCERT,VY) Vg V] 0. ~<, 0.

Finally, we can construct the following executions:

D, éMLs‘/}afn{}aas (8, L, V6L G0
D

S;end ()7 <S/>S £>1\/[Ls ‘/}S + ‘Z?f'%endﬁfzaciaas @é\.ls

AC ,\”U Y. 37’ Y
<S/>C7£:‘H'£/ Pc |77UC e =7 ML ‘/6/75/79::
~ Pe | FUC e =AU e Pe | F'UC e =7 % G Y
u’§M:ﬂ>MLC{},§, () exec (); <S’>C,§%MLC V! ¢ 6.8,

Pe|5UCe 27" B

fiexec (); (S, e L=ty V/ €,0.@0,

where § = {e-Hend+H&,+¢ and 1 = (bind f; = A\T;.€));. We verify the
following invariants:

;}7/// :c,y/// ‘/294“73/28‘/;““/;/ 95+9/S ~S 05+0/S
FCE®RY, Vs + V) V. =2V, Ot 0,5 0.+6, W

e Case S = D.;S" — Client declaration.
We assume that the following executions hold:
D, %c/sﬁc,e, O 9 %mvz,u',@;
De; 8" =50, Vi, (Des ), 6,

- pclr—=y ) _petVe[v=y Ty
DC:>C‘/C796 M::—-}C‘/C,HC

Do pf L2225V, 4+ V], 6,06,

Let us note f;%z; the injections in D, and x; the associated fresh vari-
ables. Since hoisting has been applied, all the f; are either serial or frag.
Furthermore, no fragments are executed due to the execution of injections
and D. = D.[fi%x; — ps(z;)];.



We have the following compilations:

(D¢; S), = (injection x; z;; ), end (); (5)
(De; S), = exec (); De[fi%owi — xil; 5 (5)

s

[

In the rest of this proof, we note ﬁc = D.[f;%x; — xi];.

We consider the server reduction D, =>¢/s D.. We know that D, =
D.[fi%x; — Lps(xi)];. Let us note v; = ps(z;). We can build the following
MLg reduction:

Vi. injection xi ¥ ==\, &, [ ], {xi40i} ()

(injection x; x;;)i; end () ==\, €, end, {x3+10:}; , ()

Since ps ~° ps, we also have that v; ~° v; and |v; :E Jv; for each i. We
note (o = {x;~—>10;},. By definition of the slicing relation, the x; are fresh,
hence they are not bound in 5. We can thus construct the global environ-
ment 7' =75 U (,. Since we only extend the part with injection references,
we still have that v ~¢7’.

We now consider the client reduction E%c Ve,0.. We know
that D, is equal to D.[f;%x; — Jv;];, hence the reduction tree contains

for each 7 a reduction Jv; %C Jvi, (). To obtain a reduction of ﬁc =

D.[fi%x; — xi]., we simply substitute each of these subreduction by one

of the form Xi,fwén\/mc 10, &, (). for any queue . By Lemma 1, we

can build the following reduction:

79

~

~ pe |77 ~
Dc7 g ———ML¢ va 5, 0
where 170 :2, V. and 50 :E/ 0., for any queue &.

We now consider the execution of S’. We have the following properties:

Pet Vel pe+ Ve ps=ps 7=y FCE(;,S) FCEy,ps)



. . . pPetVe - ~
By induction on the execution of S" and 1/, we have (S’), %MLS VI €., ¢l 0L

and <Sl>8 7££‘H'€/ %MLC ‘76/7 5/7 é\é where

/")7// ~C ’7/ ‘/}s/ 22// ‘/s/ 5; 22// 0;
FCE(:Y\}Q ‘/sl) ‘/cl 22” VZ 9{3 :Z// Hé

Finally, we can build the following derivations:

Vi, injection x;j z; == mr, &, [ ], Coy () (S, ==L, VI, €L, L0,

(injection x; (f x4);); end (); <S’>s éMLS ‘73/’ end-H-£,, Ce UL, 5;

= e | 7'UC e 27U e = ~ PetVe [F7UCe—7” = >
De, &L+ ===t 1 Ve, €L HHE, 0L <5’>c S ==t VL

SEN ML¢ ‘7(:“!“70/75/)50@5;

Pe |7UCeUC e =7
—_— 2

ﬁc? <S/>C 75"’_"6/ L

exec (); D¢ (S'), , end+H&,++¢'

MLo Ve + V., ¢,6.Q8,

We verify the following invariants:

)

I c ./

v =ty s~ Vs s % 0

)
S

e Case module,, X = M; S’ — Declaration of a mixed module.
We assume that the following executions hold:

M%m Ve, M€, 1,05
module,, X = M =25, {X—V,},module X = M u,0; S m VI, 0,
module, X = M; S’ ==, {X—Vs} + V!, (u;module X = M '), 05 Q0

;) _PsH{X—Vs}
_—>

pe |V =y
M ===V, 0.
s o XV} [ 47 oy
" pc | Y=y {},0. module X = M® pc | Y=y XSV, 0L W pcti Y=y VL0

p;module X = M¢S; ' pcl'y:ﬂ% {X—Ve}+ VC/,GC @02 @Gg

Let us assumes that we can build the following reductions

(module,, X = M), é>MLS {X'_ﬂ/}s} ; 8oy €, é\s

(module,, X = M), ,&+E %MLC {X'—ﬂ/}c} ,§7§c



for any £, and that the following invariants hold:

7 =y V="V b =" 6,
FCE®#}, V) Ve~ Ve Oc =5 0.+ 0.,

By induction on the execution of S’ and p’, we can build the following
. / ﬁﬁ_{XHGS} ! ¢l Aol
reduction: (S’), ML, Vs, &, ¢, 0 and
pet{X=Ve} [ QU =7
(S EattE
clude.

To build the compiled reduction, we will operate by case analysis over
M.

ML V2, &, 0., which allows us to con-

e Subcase M = struct S endx - Declaration of a mized structure.

We have p = bind X = (struct pg end) and M¢ = X with the following
reductions:

S, Vi, u, 6,

struct S end =2, V, + {Dyn—X}, X, i, 05

7'(X) =V,
m %CV&QC X'“CW:_”>CVC, 0

(bind X = struct puo end; module X = X) %c, 0.

where 7" =+ U{X—V_}.

We have the following compilations:

module X = struct
module Dyn = X

<S>S

end

(module,, X = struct S endx), =

_ bind,, X = struct (S)_ end;

dul X =st t S end =
(module,, struct S endx), nodule X = X:



By induction on the execution of S and p, we have (S), L, Vi, e, Co O

and (), €otte LT T ¢, 8, with the following invariants:
a/ ~C ,7/ ‘75 ~5 V. é‘ s 0,
FCE®},Vy) Vo, Ve 0. =%, 0.

We can then build the following executions:

<S>s é>NILS ‘73’ 507 COv é\s
<m0du:|‘em X = struct S endX)s é>NILS {XH{DYHHX} + ‘Z} 7507 C07 (/9\5

(S), , batre LIET g, 0
module X = struct (S5), end 5.—}—!—5% MLe {X»—HA/C} S €, 1/9\0

~

(module,, X = struct S end)_,&+¢ %MLC {X'—HA/C} €, 0,

Where 7" =5 U {Xb—)ffc} We verify the following invariants:

A~ V, + {Dyn—>X} ~* V, + {Dyn—>X} 8, ~° 0,
FCE®F},Vy) Vo, Ve 0. =%, 0.

which concludes.

e Subcase M = functor(X;: M;);struct S endgp — Mixed functor.

In this case, we have the client program p = bind env F and the mod-
ule expression M¢ = functor(X;: M;);struct S|. end. The following

reductions hold:

bind env F
module,, F'(X;: M;); = struct
( g m F(Xi i)i ) pey (FsVi), mongem F(X;: M;); = struct 0
endp end
bind env F
mo?'llem F(X;: M;); =struct | pc [v—~ FSVY O

end



Where v/ = v U {F—p.} and the following values:

Vs = functor(ps)(X; : M;);struct S end
V. = functor(p.)(X;: M;);struct S|. end

We recall that by hoisting, the body of the functors contains no injection,
hence we don’t need to evaluate server code in the client part.
We have the following compilations:

) B module F(X;: (M;),); = struct
<mo§ulem F(Xi: Mi)i = struct _ module Dyn = fragment,, F (X;.Dyn);;

o S
endg s enc<1 >S

_ bind,, F(X; : (M;),); = struct (S)_. end;

s ~ module F(X;:(M;),); = struct S|. end;

endp

<modulem F(X;: M;); = struct>

c

We trivially have the following execution:

module,, F(X;: M;); = struct ~
< S > %MLS {FH%}7§07{}7<>

endp

module,, F(X;: M;); = struct .
e [ Y=Y >
< s > L {FoT} 60

endp

Where 7/ =~ U {F&—ﬂ/}F} with the following values:

~

Vs = functor(p,)(X; : M;);struct (S), end
170 = functor(p.)(X;: M;);struct S|, end

~

Ve = functor(p.)(X;: M;);struct (5). end



We now need to show that the invariants still hold. We easily have that
V. :% V.. By definition of equivalence over mixed functors, we have Vg ~*

Vs. Indeed, the body of the functor in ‘75 is the server compilation of the
body of the mixed functor V; and the captured environments corresponds.
Finally, we have that the body of ‘717 is the client compilation of the body
of the mixed functors and that the capture environment corresponds to
7'(F). Thus we get that FCE(Y},V;). By definition of the annotation
function, the reference F could not have appeared on a previously executed
structure, hence we still have that FCE(;y\}, Ds)-
Hence, all the following invariants are respected, which concludes.

;7\/ ~C ’}/ ‘/}s ~S V.
FCE(};,Vy) LSV, n

Otherwise, M is a module expression. By definition of slicability, M
does not syntactically contain any structure. In the general case, we should
proceed by induction over module expressions. We will simply present the
case of a mixed functor application where the functor returns a mixed
structure.

We consider M = F(X1)...(X,). We have M°¢ = F(X;)...(X,) with
the following executions:

P functor,,(p})(Y;: M;);struct S endp,¢, ()
Xi é>77’L ‘/;Sa g, <>

psH{Yim Vi
V:?(Dyn) = Ry R fresh Sif; = Rfj|, =———=1V, 10,0

bind R = struct
(module Y; = Ry;);

Mo
end with F

F(X1)...(Xp) =2, Vi + {Dyn—R} , pu = .0

module,, X = F(X1)...(X,) =%, Vi, (u;module X = F(X1)...(X,)), 0,



c pr+{Yi=Vi} =y
’V(F) = PF V(Rl) = V'L Ho c ch? 00

bind R = struct
(module V; = Ri;)s | pelyyUiRoVe)

C 87 96
Ho
end with F
F%c functor(p.)(Y;: M;);struct S, end, ()
R p—— PetH{Yim Vil [YU{R=Ve}—y”
X’L:>C‘/;7<> SC C‘/C/79;

pc | YU{R—=Vc}—=y”

module X = F(X;)...(X,) AX—=V!} 0.

We note Vi the value of F in 75, which is functor(p))(Y;: M;);struct S end.
We have the following compilations:

__module X = F(X1)...(Xy);

(module,, X = F(X1)...(Xp)), = end ();

__module X = F(X1)...(Xy);

(module,, X = F(X1)...(X,)), = exec ():

(&

Let us now look at the execution of the server application F'(X7) ... (X,).
By hypothesis, Vg is a mixed functor. By equivalence, we know that
ps(F) = ‘A/F where ‘A/F ~* Vp. By definition of the equivalence on server
values, X/}F is of the following shape:

functor(p,)(Y; : M;);struct

% module Dyn = fragment,, F (Y;.Dyn);;
F p—

()

end

where pl, =~ p.. For each i we note 171»5 = ps(X;). By equivalence, we have
‘//\;s ~S V;s.

Furthermore, since 4 ~¢ v and by hypothesis, F is also bound in 7. We
note Vg the corresponding value. Since FCE(¥, V.) (via ps), then Vg is of
the following shape:

functor (pr)(Y;: M;);struct
Ve=1| (5.

end



where pp ~% pp = v(F). Additionally, for each ¢ we note V¢ = 7(R;). By
equlvalence, we have VZ-C ~% Ve

We can now proceed by induction on S and pg in the environment 7,
pe U{Y;—R;} and ps U {Dyn—R} U {Yy—)?f} . We obtain the following
reductions: '

ﬁ’sU Yli—>\715 . ~ Ac Yi 1R'i‘ UY—7’ 5 y
<S>8%MLS§”C.,HS,HJH(1<S>c,€.‘H—§ pel¥in Riki |G h 27 MLCVYC,f,é

with the usual invariants. We can now build the following executions:

FSU{Yi}—){/iS}A R ~
fragment,, F (Y;.Dyn); =—=M1. R.&{R,¢, () ps(F) = V5
s 7su{pyn—RIU{ Vi Vs | ~

pS( l) V <S>s ML 5074.0)987

module X = F(X1)...(Xp):end () Lo, {X»—HA/S}  ER-H-Eathend, Co, 0,

A(F) = Ve
prU Yi Ri i .UA 5’ g -~
(S),, Eotrendg LANTRIIGIDT, | D ondtie, 6.
Pe | CeUA—=7U{ RV, ~
exec (), {r+HE&e+Hend+E { ) ML €5 &, 8¢

where {gp = {R—=F(Rq)...(Ryn)}. We respect the following invariants:

;?/ ~C ’}/ "}S ~5 V. é\ s 0,
FCE(’}/]@,V) ‘/c 2%/ ‘/C 0 ’\/ 9

Let us now consider the client application. Since p. >~ AA/ Pe, we have that
the body of the functor F' is equivalent. We can thus build the following
reduction:

pe(F) = functor (p.)(Y; : M;);struct S. end

AT SRR I s bna i ki Lunall el
C (] - C

f V/ 9/

Le Ver Ve

ML¢ {X’_)f/\vc/} 757 é\(lt

Ac A,U R \7C )
module X = F(X1)...(Xy),¢ pe TARDVe}

By equivalence of F' and X; in p. and p., we have that 7/ ~¢ +/, V’ ~5, %4
and Hc _W’ 0.



We already built the reduction for the compiled server program. We can
now build the compiled client program:

PclCe Uﬁ"%"J{R'—)\A/c} ~
ML €, &, 0c

exec (), {R—F(R1)...(Ra)}+€e+end+H¢

pe | FU{R—=Vc} =57

module X = F(X1)...(X,),¢

ML¢ {XH‘/Z:,} 7§7§/c

(module,, X = F(X1)...(Xn)),,Er++Eatrend-re Lolee DT, {X»—)‘/}c/} £,0.a0,

where the invariants still hold. This concludes. |

O]

5.4.5 Proof of the main theorem

Finally, we prove Theorem 4. This is a direct consequence of Lemma 3.

Proof of Theorem 4. We have that P ;}> v, 0. By definition of an EL1OM,
program execution, we can decompose this rule as following:

P 00, =2 e,
r=L 6, @6,

We trivially have the following invariants:

=0 O~ 7=+ FCE{}LP) FCE{}{})

which allow us to apply Lemma 3 and conclude. ]



5.5 Discussion around mixed functors

In this thesis, we presented the notion of “mixed functors”, which are func-
tors that take as argument and return mixed module composed of both
client and server code. As we saw, those functors, while quite expressive,
have several limitations. In this section, we will try to explore a little bit
the design space around mixed functors and which limitations we think
could be lifted.

First, let us recall the design constraints of ELIOM: typing and slicing
are done statically and separate compilation is supported. This prevents us
from “erasing” functors by inlining them and also prevents us from dynam-
ically generating the code contained in functors. Furthermore, we want to
support languages extensions such as OCAML, where functor application
can depend on the control flow (notably, first class modules).

One alternative solution would be fully separable functors: mixed func-
tors such that client and server execution are completely independent.
While this would be easy to implement, it would also mean preventing
any meaningful usage of fragments inside functors. Our version of mixed
functors is slightly more expressive: the client part of the functor is indeed
independent from the server part, but the server part is not. The cost is
that we must do some extra book-keeping to ensure that for each server-side
application of a mixed functors, all the client side effects are performed.
We believe this expressive power is sufficient for most use cases. There
are however several limitations to our approach, which we shall discuss
point-by-point now.

Mixed functors arguments An important restriction of mixed functors
is that their arguments can only be mixed structures. The reason for this
restriction is that the Dyn field is used in order to keep track of client
applications from the server. In the semantics presented in this thesis, the
Dyn field is represented simply as a regular structure field, which means
only structures can be passed as argument. A first step would be to allow a
similar field to be added to functors. While it is a bit delicate to formalize,
it should be possible to implement it in OCAML by simply adding an
additional field to the closure. A second step would be to allow base,
client and server modules as arguments. As with usual mixed functors, care
must be taken during typechecking to not specialize eagerly. Given that



this constraint is respected, one possibility would be to introduce a new
module-level operation that can take a base, server or client structure and
turn it into a mixed structure. Given a client module A, this could be done
by inserting a structure of the form (struct include%client A end).
This could even be done transparently, since the location of modules is
always known.

Injections Injections inside mixed functors can only refer to identifiers
outside of the functor. This restriction seems particularly difficult to lift,
as demonstrated by the example in Section 4.2.2. One would need to
evaluate the usefulness of mixed functors in first-class contexts. It might
be possible to rewrite usages of injections to escaped values in fragments.
In all cases, these changes would be invasive and of limited usefulness.

Sliceability constraints The sliceability requirement presented in Sec-
tion 5.2.1 is quite restrictive. Its goal is to ensure that bind,, expressions
are not nested and that module references are unique. This requirement
can be relaxed in different manners. For mixed structures without func-
tors, this requirements can be completely removed trivially, since internal
modules are known.

For functors, there are two possibilities. A first idea would be to apply
lambda-lifting to functors. By simply lifting mixed functors to the outer
scope, we ensure that bind operations are noted nested. Another possibil-
ity would be to use a similar technique to the one used for fragments inside
functors: by prefixing each statically generated reference with the locally
available Dyn field, we ensure uniqueness while allowing arbitrary nesting.

Double application of the client side of mixed functors As mentioned
in Section 4.3.3, the client-side part of a mixed functor, when applied in
a mixed context, might be called twice. While this is not so problematic
in the context of applicative and pure functors, it might prove more trou-
blesome with generative or impure functors. This problem is difficult to
solve in general. In particular, it is in fairly direct conflict with the design
decision, justified by Section 4.2.2; to make the client and server side of a
mixed functor application independent. One potential solution would be
to provide a special interpretation of mixed application in mixed contexts



that would ensure that the result of the client-side functor application is
properly reused. Notably, this might be doable by generating at compile
time an identifier for each known returned client module.



6 Implementation

Its black gates are guarded by more than just orcs.
There is evil there that does not sleep. The great eye is
ever watchful. It is a barren wasteland, riddled with fire,
ash, and dust. The very air you breathe is a poisonous
fume.

J. R. R. Tolkien, The Fellowship of the Ring

The main goal of the formalization of ELIOM, was to inform the design
and the implementation of ELIOM as a real extension of OCAML usable
to develop real Web applications. As a consequence, everything presented
in Chapter 4 except for mixed functors is also implemented in a fork of
the OCAML compiler. This fork supports the complete OCAML language.
OCAML is quite a large language and a lot of aspects of a real programming
language are not covered by the formal specification.

This chapter presents how ELIOM is implemented, the various design
decisions that were made related to compilation, interaction with OCAML
and tooling, along with the few compromises that were occasionally made.
Some sections are quite technical and assume knowledge of the inner work-
ings of the OCAML compiler.

Everything developed in relation to this thesis is published as free soft-
ware! under the GPL and LGPL licence (with the OCAML linking excep-
tion):

e https://github.com/ocsigen/ocaml-eliomis the fork of the com-
piler;

e https://github.com/ocsigen/eliomlang contains the ELIOM run-
time and a collection of associated tools.

1T would certainly not deserve Roberto as my advisor otherwise!
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6.1 The OCaml compiler

Let us start by a quick reminder of the architecture of the OCAML compiler.
The compiler pipeline is presented in Figure 6.1a. Figure 6.1b summarizes
the numerous files involved in the OCAML compilation. The C files are
also presented, for comparison.

Byte (0( e
O
(Olllplldtloll

Typing
.—> Typed AST

ah\(
X

C ()Illpll(ll 1011

(a) The OCAML pipeline
Byte ‘ Native | C

Sources .ml .C
Interfaces .mli .h
Compiled Interfaces .cmi

Compiled Modules | .cmo | .cmx | .o
Compiled Libraries | .cma | .cmxa | .a

(b) The OCAML file extensions

Figure 6.1: The OCAML compilation

Due to separate compilation and typechecking, the OCAML compiler
uses many files. .cmi files are compiled versions of interfaces, or module
types. They are used for the purpose of separate compilation: when subse-
quent compilations need an already compiled module, the compiler loads
the file in the typing environment. Bytecode (resp. Native) compilation of
a module produces a .cmo (resp. .cmx) object file. Several of these files
can be grouped together in libraries as . cma (resp. .cmxa) files. Compiled
objects and libraries can be linked to produce a bytecode or native exe-
cutable. The compiler also produces several other files such as .cmt and
.cmti for documentation and .cmxs for inlining.

The pipeline is composed of three parts: bytecode compilation, native
compilation and a common part, which we simply call “frontend”, composed



of parsing and typechecking. An interface source file (.mli) is the text
format for module types. After parsing and verification of well-formedness,
it is transformed into a compiled interface and produces a standalone .cmi
file. A source file (.ml) is treated in several steps. Parsing produces an
abstract syntax tree (or AST) with no typing information. Typechecking
produces a Typed AST and a compiled interface. The typed AST is an
AST where all the types have been made completely explicit: each node
of the AST is annotated with its type and its local environment. The
interface is the inferred module type of the file. If a corresponding module
type is present (as a .mli file), inclusion of the two interfaces is checked. If
no module type is present, a .cmi file is produced. After typechecking, the
compiler proceeds to bytecode or native code generation. For our purpose,
everything after typechecking is a black box that produces the desired
compiled files.

6.2 The Eliom compiler

We now look at our modified ELIOM compiler. The pipeline for OCAML file
is identical to the regular pipeline. The pipeline for ELIOM file is presented
in Figure 6.2.

Slicing Regular OCAML toolchain
' SEEES— \

‘ ! Server > [m
I \ OCaAML AST . - :

)
- Modified 1 \ 1
.eliom - 1 | 1
Typing L X o
1 Client JAVASCRIPT
' OCaAML AST . . program

_____ N
JS_OF _OCAML
toolchain

Figure 6.2: The ELIOM pipeline

EvrioM files are either .eliom or .eliomi, which corresponds to .ml
and .mli respectively. The pipeline is similar to the regular OCAML one.
Each EvL1OM file is first typechecked using a modified typechecker presented
in Section 6.4. This creates an ELIOM typed AST, which still contains
both side of the program. A unique compiled interface (.cmi) is created.



We then slice the typed AST according to the procedure presented in
Section 5.2, with returns two untyped AST, one for the client part and one
for the server part. After slicing, we obtain two pure OCAML programs
that can be compiled with the regular OCAML compiler which return two
compiled objects .server.cm[ox] and .server.cm[ox]. The MLg and
ML, primitives introduced in Section 5.1 are implemented in two libraries
which are presented in Section 6.5.

One might wonder why the slicing is implemented in such a convoluted
way: we first type using a modified typechecker, then slices on the typed
program and return two untyped programs which are typed again using the
regular typechecker. The first reason is safety: By using the regular type-
checker, we increase trust in our modified typechecker. The second reason
is more pragmatic: The OCAML typed AST is a complex datastructure
which is highly optimized for fast type inference and contains non trivial
invariants. Doing transformations on such datastructure while preserving
its invariants is a difficult task. Emission of untyped AST, on the other
hand, is well supported. Thanks to the PPX ecosystem, numerous tools are
available and the compiler is robust against ill-formed ASTs which makes
developing such transformations easier.

6.2.1 Notes on OCaml compatibility

One of the important results on the ELIOM module system given Sec-
tion 4.4.1 is that any vanilla OCAML module is also an ELIOM. module,
located either on base, client or server. This is also true for the implemen-
tation. We can even go further.

Compiled interfaces created by the regular compiler can be loaded by the
ELioM compiler. A compiler flag allows to specify on which location to load
the given interfaces. Compiler interfaces created by the ELIOM compiler,
which contains extra location information, cannot be loaded by the OCAML
compiler (as it would not be able to make sense of them). Server and
Client object files are compatible with the regular compilers (and can be
linked together with object files emitted by the regular compiler). The
consequence is that the OCAML and ELIOM compilers can live graciously
side by side and any OCAML library can be used directly in ELIOM.

The various files used by external tools (such as .cmt files) are also
similarly compatible.



6.3 Converters

In the formalization, injections are modeled as the application of a con-
verter; i.e., a pair of a serialization and a deserialization function; to a
value available on the server (See Section 4.2.1). Furthermore, converters
are global constants introduced by the typing environment. This formal-
ization, however, is inconvenient to program with: it would mean the pro-
grammer needs to specify which converter to use for each injection, even
the most trivial ones. We also need a way to define new converters easily.
One promising idea would be to use ad-hoc polymorphism to infer which
converter to use based on type information. We explore this lead in Sec-
tion 6.3.1 and how it interacts with our module system. Unfortunately,
ad-hoc polymorphism is not yet available in OCAML. In Section 6.3.2 we
present what is currently implemented in ELIOM instead.

6.3.1 Modular implicits

Modular implicits [White et al., 2014] are an extension of OCAML that
adds ad-hoc polymorphism in a way that is compatible with OCAML’s
module system. An introduction to modular implicits can be found in
White et al. [2014]. The main idea is that we can use modules themselves
as implicit arguments. Converters would then be mixed modules satisfying
the signature CONV presented in Figure 6.3. The String module satisfies
the CONV signature and exports that the client and the server type are equal
to the base type string. We can also specify converters for parametrized
datatypes using functors, as presented by the List mixed functor. The
injection operator ~% will then take an implicit module C satisfying the
CONV signature, take an element of type C.t on the server and returns an
element of type C.t on the client. Finally, we can also easily implement the
frag converter by using a functor taking a module with just a datatype.
Note that we only need a client datatype and no serialization method.
This implementation has several advantages. First, it means that injec-
tions are properly parametric: Inference will work on implicit modules in
parametric functions and it plays well with polymorphism. Additionally,
defining a new converter is very easy: it is simply a module respecting a
fairly simple signature. Finally, the projection functions f* and f¢ used in
the target languages MLg and ML (Section 5.1.1) are very easy to define:
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given a converter module M, they are M.serialize and M.deserialize.
Note that implementing such a signature is not completely trivial. We
discuss serialization techniques in Section 6.5.2.

module type CONV = sig
typeS%sserver t
typesclient t
val%sserver serialize : t -> serial
valsclient deserialize : serial -> t
end

implicit%mixed String : CONV
with type%server t = string
and type%client t = string

implicit%mixed List {M : CONV} : CONV
with type%server t = M.t list
and type%client t = M.t list

implicit%mixed Fragment {M : sig type%client t end} : CONV
with type%server t = M.t fragment
and type%client t = M.t

valsclient (~%) : {C : CONV} -> C.t(*server*) -> C.t(*client*)

Figure 6.3: A signature for converters

6.3.2 Wrapping

Unfortunately, at the time of writing of this thesis, modular implicits are
not yet integrated in OCAML. ELIOM uses instead a method that was
originally devised by Pierre Chambart and Gregoire Henry and relies on
value introspection. The main idea is the following: most values can be
serialized simply by using the module Marshal from the OCAML standard
library [marshal]. As shown multiple occasions in Chapter 2, it can be
useful to transform data before serializing it. In this case, a transformation
function is attached to the value. Before serializing, the function is applied
to the value and the result is serialized. For customized deserialization, a
similar technique is applied using tags and a client-side association table
from tag to functions.

While this has the advantage of leveraging Marshal, which works for any



data structure, is very fast and preserves sharing, it also has significant dis-
advantages. First, it is not type-directed. Closures for example cannot be
serialized, which will not be detected by the type system. Furthermore,
defining converters is quite delicate: the programmer must create a func-
tion operating on values in a fairly untyped way and attach it to the value
being converted. This is an expert task that is very error-prone.

6.4 Typechecking and Slicing

Most of the differences between the ELIOM compiler and the OCAML com-
piler are modifications of the typechecker. A formal account of the differ-
ence between the two type systems was given in Section 4.2. We now give
a practical account of these differences and explain how the OCAML type
checker was modified.

The OCAML language is much larger than our ML language. In particu-
lar it contains intrusive features such as first class modules and Generalized
Algebraic Datatypes which affect many parts of the language. Our mod-
ified typechecker handles most of these features correctly thanks to the
fact that most additional typing rules for ELIOM are at the boundaries
between locations. By being conservative in the type conversions across
location boundaries (in particular, by prohibiting existential and universal
types), we avoid difficulties related to complex features of the OCaml type
system. In other aspects, the implementation follows the formalization
closely: there are now distinct namespaces for each location, with visibil-
ity rules that correspond to the relations presented in Section 4.1.1. The
use of explicit locations allows to provide good error messages for miss-
ing identifiers and wrongly located declarations such as client declarations
inside server modules.

One notable new feature of the implementation is the inference of some
location information. In particular declarations inside base, client and
server modules do not need any annotations. Similarly, most mixed an-
notations on modules can be elided. These elisions are based on the fact
that in those cases, declaration can only have one location, which make it
superfluous.



Shared declarations Another significant addition is the shared annota-
tion. This annotation has no equivalent in the formalization. In particular,
it does mot correspond to mixed modules. Shared sections were presented
in Section 2.4.4 and are implemented simply by duplicating the code be-
tween client and server, as demonstrated in Example 6.1. Note that this is
a purely syntactic transformation done before typechecking. From a type-
checking perspective, y is not a singular variable to which can be assigned
a type. There are two variables, one client and one server, with two dif-
ferent types. This is different from mixed annotation where a structure
contains both client and server parts. This slightly schizophrenic nature
of shared declarations does not lead itself to being internalized in the type
system. Nevertheless, it avoids repetitive code patterns where a similar
tasks is done both client and server side with a few distinct values, which
makes it very useful in practice.

1 let%sclient x = 2 1 let%sclient x = 2
> let%server x = "foo" > let%server x = "foo"
3 let%shared y = x 3 let%sclient y = x
| . let%server y = X
(a) Original code (b) Desugared code

Example 6.1: A shared declaration

Slicing Slicing is also identical to the formalization. An example of sliced
programs is given in Example 6.2. References are represented by unique
generated strings.

A notably difficult point is the generation of fresh identifiers. Indeed,
in our slicing formalization, we rely on generating fresh identifiers for each
injection and each fragment closure. These identifiers should be globally
unique in the complete program. However, compilation units are sliced
separately. The list of identifiers generated by slicing other modules is not
available. To overcome this limitation, we rely on the property that, in a
given OCAML program, top level module names are unique. This property
is enforced by the OCAML compiler at link time. Consequently, we can
generate locally unique identifiers prefixed by the current module path,
which produces globally unique name in a way that is compatible with



letsclient ¢ = push injection let c =
~%s + 1 "A.sl" s get injection "A.sl" + 1
let%server y = let y = register closure "Bl"
%sclient 2 + ~%x ] fragment "B1" (x) (fun x -> 2 + Xx)
push fragments "B" execute fragments "B"

Example 6.2: Client-server code slicing

separate compilation.

6.4.1 Technical details

We now present a technical account of the modifications made to the com-
piler. This section is targeted at ambitious readers who are willing to gaze
into the typechecker? in order to modify or improve the ELIOM language.
We assume that the reader is familiar with the implementation of the
OCAML typechecker. For a more gentle introduction to the typechecker,
please consult the file typing/HACKING.adoc in the standard OCAML
distribution.

The typechecker is both complex and frequently updated. Consequently,
changes to the implementation must be made with the smallest footprint
possible, in order to avoid conflicts with future modifications. One of the
important early design decision for the ELIOM compiler was complete com-
patibility with standard OCAML tools. OCAML files format such as .cmi
correspond to serializations of the internal data structure of the compiler
(notably, the typedtree). Any changes to the typedtree, type environment
or representation of type expressions would lead to changes in the compiler
files which would break binary compatibility. This leads to the following
programming rule: “Thou shall not change data structures”, of which we
will now explore the consequences.® Some techniques used by this imple-

2No, it does not gaze back. Typecheckers do not gaze. They do however inflict 2d6
sanity damage on failed bootstraps.
3Naturally, as demonstrated by the Oulipo, programming constraints only encourage
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mentation are partially inspired by the METAOCAML patches®. METAO-
CAML |Kiselyov, 2014] is an extension of OCAML for meta-programming
which employs quotations and slicing constructions that are similar to
Eriom’s fragments and injections. Notably, METAOCAML manages to
add a quotation mechanism to the OCAML type system in a remarkably
lean way (less than 1000 lines of changes on existing files).

Locations, fragments and injections The first task the modified type-
checker need to do is to keep track of the local location of the considered
code. In order to avoid passing this information around by additional ar-
guments, we simply use a global reference. While this is not particularly
elegant, there are various precedents in the OCAML typechecker (levels, no-
tably). One additional difficulty is that the typechecker occasionally uses
exception for control flow, which means we need to ensure that our global
reference is put back in order. For this purpose, we use the traditional
functional pattern of closure-based handler. While this approach sacrifices
tail-recursion, it has not proved problematic on concrete programs.

’ ’

val in location : location -> (unit -> 'a) -> ’a

In order to typecheck injections and fragments, we simply leverage
in location to typecheck the inner expression and use unification to re-
flect the inferred type upward. Unfortunately, it is not possible to introduce
additional nodes in the typedtree, but it is possible to add extra PPX anno-
tations. Thus we simply return the typedtree of the inner expression with
custom annotations ([@eliom.fragment] and [@eliom.injection], no-
tably). We then use these annotations to drive the slicing phase.

Note that in_location is not only used for typechecking. Indeed, lo-
cations must also be tracked when walking type expressions for validation
and unification due to the presence of mixed datatypes (Section 4.2.1).

Identifiers and bindings In the formalization, bindings are annotated
with location information. This is, unfortunately, difficult to achieve in
the current implementation of the typechecker without large changes to
the Env module. An alternative solution is used: instead of annotating

creativity.
“http://okmij.org/ftp/ML/Meta0Caml.html
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binders, we annotate identifiers. Identifiers are represented by the Ident.t
datatype, whose definition is given in Figure 6.4. The name field is the
name of the identifier given in the source file. The stamp is a unique
identifier. The flag field is a bitfield collecting certain flags necessary for
the compiler. Only two bits are used in this integer (one to recognize
top level module names, one for built in exceptions) which leaves at least
29 free bits. Fortunately, we can use this free space to store locations
information! The ELIOM compilers then uses two additional bits which we
will call “c” and “s” in order to determine the location of a given identifier
according to the table presented Figure 6.5. The typechecker maintains
a set of association tables of identifiers to values. This is implemented
by Ident.tbl, which implements lookup by identifiers, stamp but also
lookup by name. We re-purpose these lookup functions by making them
respect the “can be used” relation (Figure 4.2). This can be achieved easily
(although hackily) by simply accessing the current location via the global
reference during lookup. Thanks to this addition to the Ident.t datatype
and the changes in the lookup function, almost all the ELIOM location
mechanisms can be implemented without touching the typechecker’s code
itself.

Specialization Specialization is the action of taking a base type expres-
sion and bringing it to the current location. In the formalization, special-
ization only acts on binders, which is where location information is stored.
Due to the fact that location is stored inside identifiers, the implementation
is significantly more complex: we need to change the location annotations
in the identifiers of the specialized expression. This is made even more
delicate by the use of physical equality and mutations in the typechecker

1 type t =

2 y'satamp: {int; flag “c”

3 name: string; 1 0

1 mutable flags: int ag 1 | mixed | server
5} & 5 179 | client | base

Figure 6.4: The Ident.t Figure 6.5: Encoding of loca-
datatype tions



(the typechecker implements unification using a union-find algorithm em-
bedded in the typedtree). The solution used for this purpose is to simulate
copy of type expressions (as already done in the typechecker), except each
identifier is copied with its flag corrected.

Binary compatibility Thanks to the various modifications made, the type-
dtree for ELIOM is compatible with the OCAML one, but with some ad-
ditional information embedded in PPX attributes and identifiers flags. In
order to prevent the original typechecker to misuse this additional infor-
mation, we use a different magic number for cmi files.

We hope that such binary compatibility will mean that the numerous
OCAML tools, notably ocp-index, ocp-browser, odoc and merlin, can even-
tually be adapted to present ELIOM’s additional typing information.

6.5 Runtime and Serialization

We now present some practical consideration regarding the ELIOM runtime.
There are mainly two points of interest: the implementation of the ELIOM
primitives, Section 6.5.1, and the serialization format used for client-server
communication, Section 6.5.2. We also discuss a small improvement to the

«

slicing scheme in Section 6.5.3

6.5.1 Primitives

The primitives used by the slicing scheme are presented formally in Sec-
tion 5.1. The external signature for the primitives is shown in Figure 6.6.
The main difference is that the notion of references has been further divided
in closure_id and inj id for fragment closure and injections references.

Transmitted data is represented by internal data structures which are
shown in Figure 6.8. First, we use the type poly to (unsafely) represent
arbitrary values. Similarly to closures and injections, fragments have their
own kind of identifiers. Fragments on the server are represented by their
identifier. The queue of fragments contains records of type fragment,
which contains the unique identifier, the identifier of the associated closure
and a tuple containing all the arguments. Injections are represented by the
injection type, which is a pair of an identifier and the transmitted value.
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type closure id
type inj id

valsserver fragment : closure id -> 'injs -> 'a fragment
valsserver push fragments : id -> unit

; val%server push injection : inj id -> 'a -> unit
valsclient get injection : inj id -> 'a
valsclient register_closure : closure id -> (’'a -> 'b) -> unit
valsclient execute fragments : id -> unit

Figure 6.6: API for ELIOM primitives
fragment "B1"(x) ﬁ

push fragments "B"
\

[(ido,"B1",(x)); ...]

Fragment
Client : Queue
\
execute_fragments "B"

!
N A Zd > ... | Fraesment
Executlon! 0 1 s
T . able

"Bl"+—> ... | Closure
Table

*
register closure "B1"(fun x -> 2 + Xx)

Figure 6.7: Execution of fragments

Finally, the transmitted information, which corresponds to the injection
mapping ¢ and the fragment queue £ are represented by global data and
request data.

The mapping of injection is represented as an array of id/values pairs.
Instead of using an explicit end token in the queue of injection, we segment
the queue for each section by using an array of array. The usage is very
similar. Note that we use fairly basic data structures on purpose here, as
they result in more compact serialized representations.

Global data is sent for all requests while request data is local to the
request currently considered. More precisely, we can consider that the



execution of a web server proceeds in two steps. First, we start the appli-
cation: services are launched, database is accessed and so on. Fragments
and injections executed during this start-up period are considered global.
Then, the request handler is installed and start listening and responding
to requests. Fragments executed during a request are of course local to it.
This scheme allows to avoid recomputing things (global data is kept around
and can be sent along the client program when needed) and also allows
to avoid replaying some side effects. For example, the ELIOM framework
will reload only the minimum necessary when changing page inside a web
application and thus only send new request data. Request data can only
contain fragments (since injections are always global) and do not need end
token (since everything is executed in one shot).

After executing the server program, we extract the resulting data, seri-
alize it and add it to the generated HTML page. The client runtime will
deserialize it, load it and use it to run the client program.

type poly (** Arbitrary values *) 12 type injection = {
val inject: 'a -> poly 13 id : inj id;
val project: poly -> 'a 14 value : poly;

15 }

type fragment id 16
17 type global data = {

type fragment = { 18 frags : fragment array array;
closure : closure id; 19 injs : injection array;
args : poly; 20 }
value : fragment id 21 type request data =
2

1
> fragment array

}

Figure 6.8: Internal data structures for the ELIOM runtime

6.5.2 Serialization format

ELIOM typing and semantics are agnostic with regard to the serializa-
tion format, which means we can choose any of the numerous serialization
methods available. Serialization methods usually are a compromise be-
tween several aspects: safety, composition, size and speed.

In our case, serialized messages are transmitted on the network, so we
need a very compact serialization method. Furthermore, it should also be



very fast, since serialization is one of the contention points of our system.
Safety properties, on the other hand, are less important: type safety of
serialization and deserialization is guaranteed by the ELIOM type system.
Messages could also be modified en-route. This is mitigated by two facts:
HTTPS should always be used and, in case modifications are made, the
worst outcome is a failure in the JAVASCRIPT client program, which is
far less problematic than a crash in the server program. Finally, proper
composition is not strictly needed. Indeed, Given our execution scheme
for compiled program in Section 5.2, the complete arrays of injections can
be serialized at once, after the execution of the server part of the program.
The definition of converters, as discussed in Section 6.3, should be modular.

Marshal |[marshal] is very fast and produces compact messages. The
downside is that incompatible types at deserialization point might cause
runtime errors. As detailed above, this is mitigated by ELIOM’s type sys-
tem. Its distinct feature, compared to most other serialization formats, is
that it preserves the sharing of OCAML values. This is extremely impor-
tant to properly handle HTML across client-server boundaries (pointers
to HTML elements on the server should point to the relevant DOM ele-
ments on the client). A safer and more modular alternative could be to
use Balestrieri and Mauny [2016]°, which leverages Marshal, but provides
improved safety checks by combining generic programming as popularized
by approaches such as “Scrap Your Boilerplate” [Ladmmel and Jones, 2003]
combined with typed unmarshalling [Henry et al., 2012].

6.5.3 Optimized placement of sections

In Section 5.2, we present the slicing scheme for ELIOM. programs. In
particular, we present how to place section annotations exec () and end ().
While this scheme is correct, it is also very wasteful.

Let us consider Figure 6.9. We see that the first exec is not necessary:
all the fragments can be executed at once at the boundary between the set
of server section and the following client section. Furthermore, since x is a
value, it could not even lead to a fragment execution to begin with! While
this has little impact on efficiency, the high number of sections can lead
to issues in some browsers®. Additionally, it can produces bigger messages

SImplementation in https://github.com/balez/generic
5Notably Safari. See https://github.com/ocsigen/eliom/pull/387 .
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than necessary by introducing many end tokens.

Fortunately, this can be solved in a principled way with the following
remarks:

e If a server declaration does not lead to any evaluation of client frag-
ment, a end/exec pair is not needed.

e In a succession of server declarations, only one pair of end/exec is
needed, after the last successive server declaration.

The first remark can be approximated by looking if the declaration con-
tains something that is not a value. If that is the case, we need a section,
otherwise we do not. Given that OCAML and ELIOM code mostly consist
of function and type declarations, this is sufficient to eliminates more than
two thirds of end/exec calls in medium-sized websites®. The second re-
mark can easily be implemented by operating slicing only on the longest
sequences of declarations with a common location.

1
%sclient ~%x + 1]

1 let%server x
> let%server y
3
4

letsclient res = ~%y

(a) Original ELIOM code

execute fragment "A" 1
register closure "Al" 2 register closure "Al"
(fun x -> x + 1) 3 (fun x -> x + 1)
execute fragment "A" 4 execute fragment "A"
let res = get injection "A.z1l" 5 let res = get injection "A.z1"
(b) Naive client compilation (¢) Optimized version

Figure 6.9: Optimized placement of sections for a simple ELIOM program



7 State of the art and comparison

Togusa: How great is the sum of thy thoughts? If I should count
them, they are more in number than the sand.

Batou: Psalms 139, Old Testament. The way you spout these
spontaneous exotic references, 1'd say your own external
memory’s pretty twisted.

Mamoru Oshii, Ghost in the Shell 2: Innocence (2004)

ELIOM takes inspiration from many sources. The two main influences are,
naturally, the extremely diverse ecosystem of web programming languages
and frameworks, which we explore in Section 7.1, and the long lineage of
ML programming languages, which we described in Section 3.4. One of
the important contributions of ELIOM is the use of a programming model
similar to languages for distributed systems (Section 7.1.5) while using an
execution model inspired by staged meta-programming (Section 7.2).

7.1 Web programming

Various directions have been explored to simplify Web development and
to adapt it to current needs. ELIOM places itself in one of these directions,
which is to use the same language on the server and the client. Several
unified client-server languages have been proposed. They can be split in
two categories depending on their usage of JAVASCRIPT. JAVASCRIPT can
either be used on the server, with NODE.Js, or as a compilation target, for
example with GOOGLE WEB TOOLKIT for Java or EMSCRIPTEN for C.
The approach of compiling to JAVASCRIPT was also used to develop new
client languages aiming to address the shortcomings of JAVASCRIPT. Some
of them are new languages, such as HAXE, ELM or DART. Others are only
JAVASCRIPT extensions, such as TYPESCRIPT or COFFEESCRIPT.!

A fairly exhaustive list of languages compiling to JAVASCRIPT can
be found in https://github.com/jashkenas/coffeescript/wiki/
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However, these proposals only address the fact that JAVASCRIPT is an
inadequate language for Web programming. They do not address the fact
that the model of Web programming itself — server and client aspects of
web applications are split in two distinct programs with untyped commu-
nication — raises usability, correctness and efficiency issues. A first attempt
at tackling these concerns is to specify the communication between client
and server. Such examples includes SOAP? (mostly used for RPCs) and
REST? (for Web APIs). A more recent attempt is the GraphQL [GraphQL)]
query language which attempts to describe, with a type system, the com-
munications between the client and server parts of the application. These
proposals are very powerful and convenient ways to check and document
Web-based APIs. However, while making the contract between the client
and the server more explicit, they further separate web applications into
distinct tiers.

Tierless languages attempt to go in the opposite direction: by removing
tiers and allowing web applications to be expressed in one single program,
they make the development process easier and restore the possibility of
encapsulation and abstraction without compromising correctness. In the
remainder of this section, we attempt to give a fairly exhaustive taxonomy
of tierless programming languages. We first give a high-level overview of
the various trade-offs involved, then we give a detailed description of each
language.

7.1.1 Code and data location

In ELIOM, code and data locations are specified through syntactic anno-
tations. Other approaches for determining locations have been proposed.
The first approach is to infer locations based on known elements through
a control flow analysis (Stip.js, OpA, UrR/WEB): database access is on
the server, dynamic DOM interaction is done on the client, etc. Another
approach is to extend the type system with locations information (LINKS,
MLS5). Locations can then be determined by relying on simple type infer-
ence and checking.
These various approaches present a different set of compromises:

List-of-languages-that-compile-to-J]S
2https://en.wikipedia.org/wiki/SOAP
3https://en.wikipedia.org/wiki/Representational state transfer
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e We believe that the semantics of a language should be easy to predict
by looking at the code, which is why ELIOM uses syntactic annotations
to specify locations. This fits well within the OCAML language, which
is specifically designed to have a predictable behavior. On the other end
of the spectrum, languages with inferred location sacrifice predictabil-
ity for a very light-weight syntax which provides very little disruption
over the rest of the program. Typed based approaches sit somewhere
in the middle: locations are not visible in the code but are still accessi-
ble through types. Such approaches benefit greatly from IDEs allowing
exploring inferred types interactively.

e Naturally, explicit approaches are usually more expressive than implicit
approaches. Specifying locations manually gives programmers greater
control over the performance of their applications. Furthermore, it al-
lows to express mixed data structures, i.e., data structures that contain
both server and client parts as presented in Section 2.5. Such idioms are
difficult to express when code locations are inferred. We demonstrate
this with an example in the Ur/WEB description.

e Type-directed approaches to infer code location is an extremely ele-
gant approach. It can be employed either in an algebraic effect setting
(LINKS) or as modal logic annotations (ML5). By its type-directed na-
ture, error messages can be expressed in term of the source language and
it should lend itself naturally to separate compilation (although this has
not yet been achieved). However, such novel type systems significantly
extend traditional general purpose type systems (the ML one, in this
case) to the point where it seems difficult to retrofit them on an existing
languages. One lead would be to provide a tight integration using a form
of Foreign Function Interface. Such integration has yet to be proposed.

o ELIOM, as a language based on OCAML, is an effectful language. Marry-
ing inference of locations and a side-effecting semantics is delicate. The
Stip.js library [Philips et al., 2014] attempts to solve this by automati-
cally providing replication and eventual consistency on shared references.
This might cause many more communications that necessary if not done
carefully. We believe that such decision is better left in the hands of the
programmer.



7.1.2 Slicing

Once code location has been determined, the tierless program must be
sliced in (at least) two components. In ELIOM, slicing is done statically at
compile time in a modular manner: each module is sliced independently.
Another common approach is to use a static whole-program slicing trans-
formation (UR/WEB, Stip.js). This is most common for languages where
code location is inferred, simply due to the fact that such inference is
often non-modular. This allows precise analysis of location that can ben-
efit from useful code transformations such as CPS transformation [Philips
et al., 2016], inlining and defunctionalization. However, this can make it
difficult for the users to know where each piece of code is executed and
hinder error messages,. It also prevents any form of separate compilation.
Finally, slicing can be done at runtime simply by generating client
JAVASCRIPT code “on the fly” during server execution (LINKS, HOP, PHP).
Such solution has several advantages: it is easier to implement and pro-
vides a very flexible programming style by allowing programmers to com-
pose the client program in arbitrary ways. The downside is that it provides
less guarantees to the users. Furthermore, it prevents generating and opti-
mizing a single JAVASCRIPT file in advance, which is beneficial for caching
and execution purposes.

Separate and incremental compilation Most current mainstream com-
piled language support some form of incremental compilation. Indeed,
incremental compilation avoids recompiling files of which no dependency
has changed. This accelerates the feedback loop between development and
testing greatly and allow very fast recompilation times. In the case of stat-
ically typed languages, it also allows immediate checking of the modified
file thus providing developers very fast iteration cycles. The easiest way to
implement incremental compilation is through separate compilation, where
each file can be compiled completely independently. Furthermore, separate
compilation is compatible with link-time optimization and thus does not
prevent generation of heavily optimized code, as demonstrated by nearly
every C compiler. As a consequence, we consider languages that do not
support incremental compilation completely unusable for practical usages.



7.1.3 Communications

ELIOM uses asymmetric communication between client and server (see Sec-
tion 2.2.2): everything needed to execute the client code is sent during the
initial communication that also sends the Web page. It also exposes a
convenient API for symmetric communications using RPC (Section 2.3.1)
and broadcasts (Section 2.3.3), which must be used manually.

We thus distinguish several kind of communications. First, manual com-
munications are exposed through normal APIs and are performed explicitly
by programmers. Of course, the convenience and safety of such functions
vary a lot depending on the framework. Then, we consider automatic
communications, that are inserted automatically by the language at ap-
propriate points, as determined by code locations and slicing. We can
further decompose automatic communications further in two categories.
In static asymmetric communications, information is sent from the server
to the client automatically, when sending the page. In dynamic symmetric
communications, information is sent back and forth between the client and
the server dynamically through some form of channel (AJAX, websockets,
Comet, .. .).

While symmetric communications are very expressive, they impose a sig-
nificant efficiency overhead: a permanent connection must be established
and each communication imposes a round trip between client and server.
Furthermore, such communication channel must be very reliable. On the
other hand, asymmetric communications are virtually free: data is sent
with the web page (and is usually much smaller). Only a thin instru-
mentation is needed. Of course, the various communication methods can
be mixed in arbitrary manner. ELIOM, for example, uses both automatic
asymmetric and manual communications.

Offline usage Many web applications are also used on Mobile phones,
where connection is intermittent at best. As such, we must consider the
case where the web application produced by a tierless language is used
offline. In this context, asymmetric communication offer a significant ad-
vantage: given the initially transmitted information by the server, the
client program can run perfectly fine without connection. This guarantee,
however, does not extend to dynamic manual communications done by the
use of RPCs and channels. Philips et al. [2014] explore this question for



symmetric communications through their R5 requirement.

7.1.4 Type systems

Type safety in the context of tierless languages can encompass several
notions. The first notion is the traditional distinction between weakly and
strongly typed languages. In the interest of avoiding a troll war among
the jury, we will not comment further. A more interesting question is
whether communication errors between client and server are caught by
the typechecker. This is, surprisingly, not the case of UR/WEB since
location inference and slicing is done very late in the compilation process,
far after type checking. One consequence of this is that slicing errors are
fairly difficult to understand [Chlipala, 2015a, page 10].* While the ELIOM
formalization is type safe, the ELIOM implementation is not, due to the
use of wrapping and Marshall (Section 6.3.2), which will fail at runtime on
functional values.

Another remark is the distinction between client and server universes.
ELIOM has separate type universes for client and server types (see Sec-
tion 4.2.1). Most tierless languages do not provide such distinction, no-
tably for the purpose of convenience. Distributed systems such as ACUTE,
however, do make such distinction to provide a solution for API versionning
and dynamic reloading of code. In this case, there are numerous distinct
type universes.

5

Module systems The notion of module system varies significantly de-
pending on the language. In ELIOM we consider an ML-style module sys-
tem composed of a small typed language with structures and functors. We
believe modules are essential for building medium to large sized programs:
this has been demonstrated for general purpose languages but also holds
for web programming languages, as demonstrated by the size of large mod-
ern websites (the web frontend of facebook alone is over 9 millions lines
of code). Even JAVASCRIPT recently obtained a module system in ES6.

4 “However, the approach we adopted instead, with ad-hoc static analysis on whole
programs at compile time, leads to error messages that confuse even experienced
Ur/Web programmers.”

50Or, more philosophically: Is your favorite language platonist or nominalist ?



In the context of tierless languages, an interesting question is the interac-
tion between locations and modules. In particular, can modules contain
elements of different locations and, for statically typed languages, are lo-
cations reflected in signatures?

Types and documentation Type systems are indisputably very useful
for correctness purposes, but they also serve significant documentation
purposes. Indeed, given a function, its type signature provides many prop-
erties. In traditional languages, this can range from very loose (arguments
and return types) to very precise (with dependent types and parametric-
ity [Wadler, 1989]). In the context of tierless languages, important ques-
tions we might want to consider are “Where can I call this function?” and
“Where should this argument come from?”. The various languages exposes
this information in different ways: ELIOM does not expose location in the
types, but it is present in the signature. ML5 exposes this information
directly in the types. UR/WEB and LINKS do not expose that information
at all.

7.1.5 Details on some specific approaches

We now provide an in-depth comparison with the most relevant approaches.
A summary in Figure 7.1 classifies each approach according to the main
distinctive features described in the previous paragraphs. Each language
or framework is also described below.

Locations Slicing Communications | Type safe | Host language
ELiom Syntactic Modular Asymmetric v OCamML
Links | Type-based* | Dynamic* Symmetric v -
Ur/WEB Inferred Global (A)symmetric~ vE -
Haste Type-based Modular Symmetric v HASKELL
Hop Syntactic Dynamic* (A)symmetric~ X JavaScripT*
Meteor.js Syntactic Dynamic Manual X JAVASCRIPT
Stip.js Inferred Global Symmetric* X JAVASCRIPT
ML5 | Type-based Global* Symmetric v -
Acute Syntactic Modular Distributed v OCaMmL

Figure 7.1: Summary of the various tierless languages
See previous sections for a description of each headline. A star * indicates that details are
available in the description of the associated language. A tilde ~ indicates that we are unsure,
either because the information was not specified, or because we simply missed it.



Ur/WEB [Chlipala, 2015a,b] is a new statically typed language espe-
cially designed for Web programming. It features a rich ML-like type and
module system and a fairly original execution model where programs only
execute as part of a web-server request and do not have any state (the
language is completely pure). While similar in scope to ELIOM, it follows
a very different approach: Location inference and slicing are done through
a whole-program transformation operated on a fairly low level representa-
tion. Notably, this transformation relies on inlining and removal of high-
order functions (which are not supported by the runtime). The advantages
of this approach are twofold: It makes UR/WEB applications extremely
fast (in particular because it doesn’t use a GC: memory is trashed after
each request) and it requires very little syntactic overheads, allowing pro-
grams to be written in a very elegant manner.

The downsides, however, are fairly significant. UR/WEB’s approach is
incompatible with any form of separate compilation. Many constructs are
hard-coded into the language, such as RPCs and reactive signals and it
does not seem possible to implement them as libraries. The language is
clearly not general and has a limited expressivity, in particular when trying
to use mixed data-structures (see Section 2.5). For example, Example 7.1.
presents the server function button 1list which takes a list of labels and
client functions and generates a list of buttons. We show the ELIOM im-
plementation and a tentative UR/WEB implementation. The UrR/WEB
version typechecks but slicing fails. We are unable to write a working ver-
sion and do not believe it to be possible: indeed, in the ELIOM version
we use a client fragment to build the list 1 as a mixed data-structure.
This annotation is essential to make the desired semantics explicit. Other
examples, such as the accordion widget (Section 2.7) are expressible only
using reactive signals, which present a very different semantics.

Hop [Serrano et al., 2006] is a dialect of Scheme for programming Web
applications. Its successor, HOP.js [Serrano and Prunet, 2016], takes the
same concepts and brings them to JAVASCRIPT. HOP uses very simi-
lar language constructions to the one provided by ELIOM: ~-expressions
are fragments and $-expressions are injections. All functions seem to be
shared by default. Communications are asymmetric when possible and use
channels otherwise. However, contrary to ELIOM, slicing is done dynami-
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letsclient handler _ = alert "clicked!"
let%server 1 =
[ ("Click!", [%client handler]) 1

let%server button list lst =
ul (List.map (fun (name, action) ->
1i [button
~button type: ‘Button
~a:[a_onclick action]
[pcdata namel])
1st)

let main () =
body (button list 1)

(a) ELIOM version

fun main () : transaction page =

let
fun handler = alert "clicked!"
val 1 = Cons (("Click!", handler), Nil)
fun button list 1lst =
case lst of
Nil => <xml/>
| Cons ((name, action), r) =>
<xml>
<xml><button value={name}
onclick={action}/>
{buttons r}
</xml>
in
return <xml>
<body>{button list 1}</body>
</xml>
end

(b) Tentative Ur/WEB version. Typechecks but does not compile.

Example 7.1: Programs building a list of buttons from a list of client side
actions



cally during server execution [Loitsch and Serrano, 2007|. The semantics
of Hop has been formalized [Serrano and Queinnec, 2010, Boudol et al.,
2012] and does present similarities to the interpreted ELIOM semantics
(Section 4.3). HOP is however significantly more dynamic than ELIOM: it
allows dynamic communication patterns through the use of channels and
allows nested fragments in the style of staged meta-programming which al-
lows to generate client code inside client code. In the tradition of Scheme,
Hop only uses a minimal type system for optimizations and does not have a
notion of location. In particular HOP does not provide static type checking
and does not statically enforce the separation of client and server universes
(such as preventing the use of database code inside the client).

LINKs [Cooper et al., 2006] is an experimental functional language for
client-server Web programming with a syntax close to JAVASCRIPT and an
ML-like type system. Its type system is extended with a notion of effects,
allowing a clean integration of database queries in the language [Lindley
and Cheney, 2012]. In Example 7.2, we highlight two notable points of
LiNks: the function adults takes as argument a list 1 and returns the
name of all the person over 18. This function has no effect and can thus
run on the client, the server, but can also be transformed into SQL to run
in a database query. On the other hand, the print function has an effect
called “wild” which indicates it can’t be run inside a query. Effects are also
used to provide type-safe channel-based concurrency.

LINKS also allows to annotate functions by indicating on which location
they should run. Those annotations, however, are not reflected in the type
system. Communications are symmetric and completely dynamic through
the use of AJAX. Client-server slicing is dynamic (although some progress
has been made towards static query slicing [Cheney et al., 2014]) and
can introduce “code motion”, which can moves closures from the server
to the client. This can be extremely problematic in practice, both from
an efficiency and a security point of view. The current implementation of
LINKS is interpreted but a compilation scheme leveraging the Multicore-
OCAML efforts has been recently added. Although LINKS is very seducing,
the current implementation presents many shortcomings given its statically
typed nature: slicing is dynamic and produces fairly large JAVASCRIPT
code and the type system does not really track client-server locations.
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METEOR.JS [Meteor.js| is a framework where both the client and the
server sides of an application are written in JAVASCRIPT. It has no built-in
mechanism for sections and fragments but relies on conditional if state-
ments on the Meteor.isClient and Meteor.isServer constants. It does
not perform any slicing. This means that there are no static guarantees
over the respective execution of server and client code. Besides, it pro-
vides no facilities for client-server communication such as fragments and
injections. Compared to ELIOM, this solution only provides coarse-grained
composition.

Stip.Js [Philips et al., 2014] allows to slice tierless JAVASCRIPT pro-
grams with a minimal amount of annotations. It emits METEOR.JS pro-
grams with explicit communications. Annotations are optionally provided
through the use of comments, which means that STIP.JS are actually per-
fectly valid JAVASCRIPT programs. Location inference and slicing are
whole-program static transformations. Communications are symmetric,
through the use of fairly elaborate consistency and replication mechanisms
for shared references. This approach allows the programmer to write code
with very little annotations. As opposed to UR/WEB, manual annotations
are possible, which might allow to express delicate patterns such as mixed
data-structures and prevents security issues.

Distributed programming

Tierless languages in general are very inspired by distributed programming
languages. The main difference being that distributed programs contain an
arbitrary number of locations while tierless web programs only have two:
client and server. Communications are generally symmetric and dynamic,

links> fun adults(l) {
for (x <- 1) where (x.age >= 18) [(name = x.name)]l } ;;
adults = fun : ([(age:Int,name:a| )]) -> [(name:a)]

5 links> print ;;

print : (String) {wild}-> ()

Example 7.2: Small pieces of LINKS code



due to the multi-headed aspect of distributed systems. There are of course
numerous programming languages dedicated to distributed programming.
We present here two relevant approaches that put greater emphasis on the
typing and tierless aspects.

Ekblad [2017] proposes an EDSL of HASKELL for distributed program-
ming. This DSL allows to express complex orchestrations of multiple nodes
and external components (for example databases and IoT components),
with handling of distinct type universes when necessary. Instead of us-
ing syntactic annotations, locations are determined through typing. This
approach works particularly well in the context of HASKELL, thanks to
the advanced type system and the syntactic support for monads and func-
tors. Multiple binaries are produced from one program. Slicing relies on
type information and dead code elimination, as provided by the GHC com-
piler. Explicit slicing markers similar to ELIOM’s section annotations are
the subject of future work. Communications are dynamic and symmetric
through the use of websockets. One notable feature of this DSL is that it
offers a client-centric view: The control flow is decided by the client which
pilots the other nodes. This is the opposite of ELIOM where the server can
assemble pieces of client code through fragments. This work also inherits
the HASKELL and GHC features in term of modules, data abstraction and
separate-compilation. A module language has been developed for HASKELL
by Kilpatrick et al. [2014].

An earlier version, HASTE.ApP [Ekblad and Claessen, 2014], was limited
to only one client and one server and used a monadic approach to structure
tierless programs.

ML5 [VII et al., 2007] is an ML language that introduces new con-
structs for type-safe communication between distributed actors through
the use of location annotations inside the types called “modal types”. It
is geared towards a situation where all actors have similar capabilities. It
uses dynamic communication, which makes the execution model very dif-
ferent from ELioM. ML5 provides a very rich type system that allows to
precisely export the capabilities of the various locations. For example, it is
possible to talk about addresses on distant locations and pass them around
arbitrary. ELIOM only supports such feature through the use of fragments,



for client code.

Unfortunately, ML5 does not have a module system. However, we be-
lieve that ML5’s modal types can play a role similar to ELioM’s loca-
tion annotations on declarations, including location polymorphism. ML)
uses a global transformation for slicing. Given the rich typing information
present in ML5’s types, it should lend itself fairly well to a modular slicing
approach, but this has not been done.

AcuTE [Sewell et al., 2007] is an extension of OCAML for distributed
programming. It provides typesafe serialization and deserialization and
also allows arbitrary loading of modules at runtime. Like ELIOM, it pro-
vides a full-blown module system. However, it takes an opposite stance on
the execution model: each actor runs independent programs and commu-
nications are completely dynamic.

Handling of multiple type universes is done by providing a description
of the type with each message and by versioning APIs. In particular, great
care is taken to provide type safe serialization by also transmitting the type
of messages alongside each message. This gives ACUTE very interesting
capabilities, such as reloading only part of the distributed system in a
type-safe way.

7.2 Staged meta-programming

An important insight regarding ELIOM is that, while it is a tierless pro-
gramming language and tries to disguise itself as a distributed program-
ming language, ELIOM corresponds exactly to a staged meta-programming
language. ELIOM simply provides only two stages: stage 0 is the server,
stage 1 is the client. ELIOM’s client fragments are the equivalent of stage
quotations.

Most approaches to partial evaluation are done implicitly (not unlike
tierless languages with implicit locations). We take inspiration from several
approaches that combine staged meta-programming with explicit stages
annotations that are reflected in the type system, which we describe here.

METAOCAML [Kiselyov, 2014] is an extension of OCAML for meta pro-
gramming. It introduces a quotation annotation for staged expressions,



whose execution is delayed. Quotations and antiquotations corresponds
exactly to fragments and injections. The main difference is that METAO-
CAML is much more dynamic: quoted code does not have to be completely
closed when produced and well-scopedeness is checked dynamically, just
before running the quoted code. This allows very dynamic behaviors such
as automatic insertion of let-bindings [Kiselyov, 2015] and dynamically de-
termining staged stream pipelines [Kiselyov et al., 2017]. One difference
is the choice of universes: ELIOM has two universes, client and server,
which are distinct. METAOCAML has a single type universe but a series
of scopes, for each stage, included in one another.

METAOCAML itself provides no support for modules and only leverages
the OCAML module system. Staging annotations are only on expressions,
not on declarations.

Modular macros [Nicole, 2016, Yallop and White, 2015| are another ex-
tension of OCAML. It uses staging to implement macros. It provides both
a quotation-based expression language along with staging annotations on
declarations. It also aims to support modules and functors. The slicing
can be seen as dynamic (since code is executed at compile time to produce
pieces of programs). In particular, this allows to lift most of the restriction
imposed on multi-stage functors. They also use a notion similar to convert-
ers, except that the serialization format here is simply the OCAML AST.
The main difference compared to ELIOM is how the asymmetry between
stage 0 and stage 1 is treated. Only one type universe is used and there is
no notion of slicing that would allow a distant execution.

Feltman et al. [2016] presents a slicing technique for a two-staged sim-
ply typed lambda calculus. Their technique is similar to the one used in
EvrioM. They distinguish their language it three parts: 1G, which cor-
responds to base code; 1M, which corresponds to server code; and 2M,
which corresponds to client code. They also provide a proof of equivalence
between the dynamic semantics and the slicing techniques. This proof has
been mechanized in Twelf. While their work is done in a more general
settings, they do not specify how to transfer rich data types across stages
(which is solved in ELIOM using converters). They also do not propose a
module system.



8 Conclusion

To the designer of programming languages, I say: unless you
can support the paradigms I use when I program, or at least
support my extending your language into one that does support
my programming methods, I don’t need your shiny new
languages; [..] To persuade me of the merit of your language,
you must show me how to construct programs in it.

Robert W. Floyd, The paradigms of programming

In this thesis, I presented the ELIOM language, its design, formalization
and implementation. Through ELIiOM, I also presented several related
notions, such as ML languages, tierless web programming and staged meta-
programming. At its core, ELIOM combines the various insights made
by staged meta-programming languages and the very powerful OCAML
language in order to provide a safe and efficient programming language
that allows to write client-server tierless programs in a convenient way.
One might note that, for most of this thesis, we do not talk about
the Web all that much. Indeed, while OCSIGEN is a Web programming
framework, the language constructs we presented are not specific to Web
programming. In fact, the minimal runtime developed during this the-
sis only needs the OCAML standard library to run, and can be compiled
to any targets! Given the static nature of the ELIOM programming lan-
guage, the server and the client part are separated and compiled statically,
so ELIOM could be used to write more general client-server applications.
Similarly, we believe that several techniques developed in the context of
this thesis are of more general use. Notably, converters are a generic so-
lution to make cross-stage persistence manipulable in a first class manner
by programmers. From this perspective, ELIOM can be seen as a general
approach for type-safe client-server communications. Indeed ELIOM does
not force a specific programming style on the user. The additional primi-
tives can be used for traditional Web programming techniques, as well as
Model-View-Controller architectures or a more modern Functional Reac-
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tive approach. It simply turns out that combining those primitives with a
programming language that supports modularity and encapsulation such
as OCAML yields a powerful Web programming language.

Another focus of this thesis is to make ELIOM usable in practice. Chap-
ter 2 was dedicated to presenting the ELIOM programming language from
a user’s perspective, with numerous examples demonstrating its usefulness
for building Web applications and libraries. Chapter 6 presents how ELIOM
can be implemented as an actual extension of the OCAML compiler. In
general, many design choices of ELIOM were inspired by practical concerns.
Indeed, in order to be useful, a language must have an ecosystem. The
simplest way to have an ecosystem is to reuse the one of an existing lan-
guage, hence the development of ELIOM as an extension of OCAML. Since
incremental compilation is indispensable for any non-trivial programming
projects, our design must be compatible with it. Given the existence of the
OCaml module system, we needed good interaction between modularity,
abstraction and the tierless annotations. All this led us to develop the
various features presented in this thesis such as fragments, converters and
location annotations inside modules.

Of course, there is still significant work to be done on the ELiOM lan-
guage. From a practical point of view, the new implementation needs to
be improved and tested by more users. On the more theoretical aspects,
mixed functors are still very much work in progress, as noted in Section 5.5.
Instead of dwelling on these unfinished tasks, I would like, after three and
a half years working on the subject, to offer my personal vision for the
perfect tierless statically typed Web programming language.

My ideal tierless programming language ELIOM is, as said above, very
practically-minded. By extending OCAML, it leverages its many strengths
but also inherits its design choices and weaknesses. As such, it represents a
local optimum in the design space of tierless Web programming languages.
I believe we can do better, and I will attempt here to give my ideas on
how.

Before considering the tierless aspects, let me settle the kind of language
I will consider here. As should be apparent by now, I strongly prefer
statically-typed strict-by-default languages. Dynamic languages do have
numerous advantages, for example in the context of distributed systems like



Erlang or in very dynamic settings where the Scheme family excels. Indeed,
Hop already provides a very convincing solution for dynamically-typed
tierless Web programming. My personal taste!, however, goes to static
typing, both for the numerous benefits it provides in term of soundness
and convenience, but also because the discipline it offers help me organize
my own thoughts on how and what to do while exploring the complicated
maze of design decisions that is programming.

Given this context, I believe that the modularity and encapsulation prop-
erties of a strong module system with abstract datatypes are one of the best
programming tools available in modern programming languages. Modules
give the programmer the ability to manipulate structured programs di-
rectly inside the language and allows to enforce invariants inside module
boundaries, as demonstrated on multiple occasions in Chapter 2. These
capabilities are essential for any kind of modular programming, includ-
ing Web programming. A module system providing these capabilities can
take many forms: the “classical” ML module system, the more practical
OCAML one; more experimental module systems such as 1ML [Rossberg
et al., 2014] or even something quite different, such as Backpack |Kilpatrick
et al., 2014]. All these module systems provide the ability to hide internal
details through abstraction and to manipulate modules in very powerful
ways, thus providing the necessary tools for modular large scale program-
ming.

On the tierless aspects, syntactic annotations are essential to provide
finer control, as argued in several occasions in this thesis. However, I
believe a type-and-effect system in the style of Eff [Bauer and Pretnar,
2012| could provide a tighter integration between the type system and
the tierless annotations. Indeed, we would have two effects: “client” and
“server”. Fragments would only contain code that has no “server” effect,
but would produce a server effect themselves. This could allow to elide
some of the most obvious annotations, hence allowing a programming style
similar to Ur/Web’s implicitness while still providing the necessary control
when needed. Furthermore, location information would be exposed at the
module level directly through the effects systems, thus replacing the need
for annotations in module types. Effects would then play a similar role

'For the willing, I can propose other lively debates: Vim vs. Emacs; Zelazny vs.
Sanderson, K. Dick vs. Asimov; Tomatoes vs. Potatoes.



than modalities in ML5. Links already demonstrated that such an effect-
based language can be compiled down to quotations [Cheney et al., 2014],
which would allow to keep the efficient execution model of ELIOM.

Finally, while there is a rather large tooling ecosystem surrounding Web
languages, the same cannot be said about tierless languages (except maybe
Hop.js). In particular, a REPL for a statically sliced tierless language
would both be technically challenging and provide a more exploratory style
of programming.

This design can be decomposed in a combination of powerful general-
purpose features (here, modularity, abstraction and effect systems) and a
few selected specific-purpose primitives (our two new effects). This com-
bination allows to build up new idioms for a chosen domain and provides
good integration into existing languages. By exposing orthogonal features
that interact well instead of baking complex constructions in the language,
we can provide tools that are more flexible and easier to extend by pro-
grammers. | believe this is a nice way of designing programming languages,
and I hope to pursue it in other domains in the future.
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