ELIOM: tierless Web programming from the ground up *

Gabriel RADANNE

Univ Paris Diderot, Sorbonne Paris
Cité, IRIF UMR 8243 CNRS

gabriel.radanne@pps.univ-paris-
diderot.fr

Jérome VOUILLON

CNRS, IRIF UMR 8243, Univ Paris
Diderot, Sorbonne Paris Cité,
BeSport

jerome.vouillon@pps. univ-paris-

Vincent BALAT

Univ Paris Diderot, Sorbonne Paris
Cité, IRIF UMR 8243 CNRS,
BeSport

vincent.balat@univ-paris-diderot.fr

diderot.fr

Vasilis PAPAVASILEIOU

Univ Paris Diderot, Sorbonne Paris Cité, IRIF UMR 8243 CNRS
vasilis@fastmail.net

Abstract

ELIOM is a dialect of OCAML for Web programming. It
can be used both server and client-side. Server and client
sections can also be mixed in the same file using syntactic
annotations. This allows one to build a whole application as
a single distributed program, in which it is possible to define
in a composable way reusable widgets with both server and
client behaviors. Our language also enables simple and type-
safe communication. ELIOM matches the specificities of the
Web by allowing the programmer to interleave client and
server code while maintaining efficient one-way server-to-
client communication.

We present how the language extensions introduced by
ELIOM introduces a new paradigm for web programming,
and how this paradigm allows building complex libraries
easily, safely, and in a composable manner.

Keywords Web, client-server, OCAML, ML, ELIOM, OC-
SIGEN, functional programming

1. Introduction

The emergence of rich Web applications has led to new chal-
lenges for programmers. Most early web applications fol-
lowed a simple model: use the language of your choice to
create, on the server, a Web page composed of HTML for

*This work was partially performed at IRILL, center for Free Software
Research and Innovation in Paris, France, http://www.irill.org

[Copyright notice will appear here once *preprint’ option is removed.]

structure, CSS for styling, and JAVASCRIPT for interactivity,
and send it all to the client using HTTP. This model does not
stand up to the requirements of the modern Web. For exam-
ple, current applications involve complex behaviors that rely
on bi-directional communication between client and server
(e.g., notifications and messaging). Such communication is
not easy to achieve while maintaining a strict separation be-
tween client- and server-side logic, let alone in a type-safe
way. Additionally, the tendency towards larger Web appli-
cations imposes composability requirements that go beyond
the capabilities of early Web technologies.

Recent work proposes unified languages that encom-
pass both client-side and server-side code, for example
LINKS ()and UR/WEB (,b).
These tierless languages allow better encapsulation and
composition. When combined with static typing, they also
allow statically checking client-server communication.

ELIOM is an extension of OCAML that can express client-
and server-side code in an integrated way. ELIOM thus pro-
vides the composability advantages of tierless programming,
namely composability and seamless type-safe client-server
interaction, but also brings in the benefits of an existing lan-
guage. The ELIOM-specific primitives are limited in scope
and orthogonal to the standard constructs of an ML-like lan-
guage. This separation of concerns allows us to reason about
ELIOM formally ().

ELIOM is part of the larger OCSIGEN ()
project. OCSIGEN provides a comprehensive set of tools and
libraries for developing Web applications in OCAML, in-
cluding the compiler JS_OF_OCAML (

), a Web server, and libraries for concurrency (
), HTML manipulation () and database inter-
action (). Designing ELIOM as a
minimalist extension of OCAML aligns well with its position
in the OCSIGEN and wider OCAML ecosystems. Namely, we

2016/8/1

http://www.irill.org

have implemented ELIOM by extending the OCAML com-
piler; but we have only modified the compiler frontend, with
the backend and runtime remaining untouched. ELIOM code
can thus use pre-existing and unmodified OCAML packages.
This has allowed the OCSIGEN team to build a comprehen-
sive set of Web development libraries that follow the tierless
paradigm of ELIOM, without sacrificing compatibility with
the wider OCAML ecosystem.

We focus here on the practical aspects of programming
with ELIOM. More specifically, we discuss how our lan-
guage enables a paradigm well-suited for easily and safely
implementing libraries and applications that involve com-
plex client-server interactions.

2. A glimpse of the ELIOM language

An ELIOM application is composed of a single program
which is decomposed by the compiler into two parts. The
first part runs on a Web server, and is able to manage several
sessions at the same time, with the possibility of sharing
data between sessions, and to keep state for each browser
or tab currently running the application. The client program,
compiled statically to JAVASCRIPT, is sent to each client by
the server program along with the HTML page, in response
to the initial HTTP request. It persists until the browser tab
is closed, or until the user follows an external link.

Composition The ELIOM languages allows to define and
manipulate on the server, as first class values, fragments of
code which will be executed on the client. This gives us the
ability to build reusable widgets that capture both the server
and the client behaviors transparently.

This makes it possible to define libraries and building
blocks without explicit support from the language. For in-
stance, in the case of ELIOM, RPCs, a functional reactive
library for Web programming, and a GUI toolkit (

) have all been implemented as libraries.

Explicit communication ELIOM is using manual annota-
tions to determine whether a piece of code is to be executed
server- or client-side (;). This
choice is motivated by the fact that we believe that the pro-
grammer must be well aware of where the code is to be exe-
cuted, to avoid unnecessary remote interactions. Explicit an-
notations also prevent ambiguities in the semantics, allow for
more flexibility, and enable the programmer to reason about
where the program is executed and the resulting trade-offs.
Programmers can thus ensure that some data stays on the
client or on the server, and choose how much communica-
tion takes place.

A simple and efficient execution model ELIOM relies on
a novel and efficient execution model for client-server com-
munication that avoids constant back-and-forth communica-
tion. This model is simple and predictable. Having a pre-
dictable execution model is essential in the context of an im-
pure language, such as OCAML.

We now present the language extension that deals with
client-server code and the corresponding communication
model. Even though ELIOM is based on OCAML, little
knowledge of OCAML is required. We explicitly provide
some type annotations for illustration purposes, but they are
not mandatory.

2.1 Sections

The location of code execution is specified by section anno-
tations. We can specify that a declaration is performed on the
server, or on the client:

lets s = ...

3 lets c = ...

A third kind of section, written as shared, is used for
code executed on both sides. We use the following color
convention: client is in , server is in and shared
is in green.

2.2 Client fragments

A client-side expression can be included inside a server
section: an expression placed inside [% e]
will be computed on the client when it receives the page;
but the eventual client-side value of the expression can be
passed around immediately as a black box on the server.

lets x : int fragment = [% 1+ 3]

For example, here, the expression 1 + 3 will be evaluated
on the client, but it’s possible to refer server-side to the future
value of this expression (for example, put it in a list). The
value of a client fragment cannot be accessed on the server.

2.3 Injections

Values that have been computed on the server can be used
on the client by prefixing them with the symbol ~%. We call
this an injection.

lets s @ int =1 + 2

3 lets c : int = ~%s + 1

Here, the expression 1 + 2 is evaluated and bound to vari-
able s on the server. The resulting value 3 is transferred to
the client together with the Web page. The expression ~%s
+ 1 is computed client-side.

Injection also enable us to access client fragments which
have been defined on the server:

let$ x : int fragment = [% 1+ 3]

3 lets c : int = 3 + ~%x

The value inside the client fragment is extracted by ~%x,
whose value is 4 here.

3. Using ELTOM

We now provide examples on how to use the ELIOM ex-
tensions. Our two examples are extracted from code that
appears in the OCSIGEN tutorial and in the ELIOM library

2016/8/1

(). Both examples are slightly idealized for clarity of
exposition.

3.1 User interface widget

We can define a button that increments a client-side counter
and invokes a callback each time it is clicked. We use a
DSL to specify HTML documents. The callback action
is a client function. The state is stored in a client-side refer-
ence. The onclick button callback is a client function that
modifies the reference, and then calls action. This illus-
trates that one can define a function that builds on the server
a Web page fragment with a client-side state and a param-
eterized client-side behavior. It would be straightforward to
extend this example with a second button that decrements
the counter while sharing the associated state.

lets counter (action: (int -> unit)
let state = [% ref 0] in
button
~button_type: ‘Button
~a:[a_onclick

fragment) =

[% fun _ —>
incr ~%state;
~%action ! (~%state) 1]
[pcdata "Increment"

counter is a server widget that captures both server and
client behavior. The behavior is properly encapsulated inside
the widget. Here is the corresponding API for such a widget:

vals counter: (int -> int) fragment -> Html.t

This widget is easily composable: the client state included
cannot affect another widget and it can be used to build
bigger widgets. Furthermore, the execution is efficient, given
that the server only ever sends data along with the initial
version of the page

3.2 Remote procedure call library

When using fragments and injections, the only communica-
tion between client and server that takes place is the original
HTTP request and response. However, further communica-
tion is sometimes desirable. A remote procedure call (RPC)
is the action of calling, from the client, a function defined on
the server.

We present here an RPC API implemented using the
ELIOM language. The API is shown in Figure 1. An example
can be seen in Figure 2.

In the example, we first create server-side an RPC end-
point using the function Rpc.create. This function re-
turns a value of type (int, int)Rpc.t, thatis a RPC
with argument and return value both of type int. Rpc.t is
an abstract type on the server, but expands to a function type
on the client. The input of the function is transmitted from
the client to the server, which is why we require a Json.
decoder when creating an endpoint. This decoder parses
the untrusted value serialized as JSON by the client.

We give a quick sketch of how this API is implemented.
Let us first assume we have a function serve of type
string -> (request -> answer)-> unit that

F

type$ ("i,70) t
> type$ ("i,’0) t ='1 -> 'o
vals create :
’i Json.decoder -> (i -> o) -> ('i, 'o) t

Figure 1. The simplified RPC api

(int, int) Rpc.t =
(fun x —> x + 1)

lets plusl :
Rpc.create Json.int

lets f x = ~%plusl x + 1

Figure 2. An example using the RPC api

can create an HTTP handler at a specified URL. When
Rpc.create is called, a unique identifier id is created,
along with anew HTTP endpoint " /rpc/1id" that invokes
the specified function.

When doing an injection, instead of transmitting the end-
point, we simply send the URL of the endpoint, and nothing
else. The client side uses this URL to create a function per-
forming an HTTP request to the endpoint. This way, an RPC
endpoint can be accessed simply with an injection.

The ability to transform the data before sending it to the
client is made possible by the use of converters (

).

Conclusion

We provided a brief introduction to the ELIOM language and
discussed the programming paradigm that it enables. In the
talk, we will present additional, more complex examples,
various other libraries along with their implementation, and
an in-depth comparison to other tierless languages.

References

V. Balat. Client-server Web applications widgets. In WWW’13 dev
track, 2013. ISBN 978-1-4503-2038-2.

V. Balat, J. Vouillon, and B. Yakobowski. Experience report:
Ocsigen, a Web programming framework. In ICFP, pages 311—
316. ACM, 2009. ISBN 978-1-60558-332-7.

V. Balat, P. Chambart, and G. Henry. Client-server Web appli-
cations with Ocsigen. In WWW’12 dev track, page 59, Lyon,
France, Apr. 2012.

A. Chlipala. Ur/Web: A simple model for programming the Web.
In POPL, 2015a. ISBN 978-1-4503-3300-9. doi: 10.1145/
2676726.2677004.

A. Chlipala. An optimizing compiler for a purely functional Web-
application language. In ICFP, 2015b.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming without tiers. In FMCO, pages 266-296, 2006.

Eliom. Eliom web site. http://ocsigen.org/.

Ocsigen Toolkit. Ocsigen Toolkit.
ocsigen—-toolkit/.

G. Radanne, J. Vouillon, and V. Balat. Eliom: A core ML lan-
guage for Tierless Web programming. Submitted to APLAS

http://ocsigen.org/

2016/8/1

http://ocsigen.org/
http://ocsigen.org/ocsigen-toolkit/
http://ocsigen.org/ocsigen-toolkit/

2016. URL https://hal.archives-ouvertes.fr/
hal-01349774.

G. Scherer and J. Vouillon. Macaque : Interrogation sire et flexible
de base de données depuis OCaml. In 2/éme journées franco-
phones des langages applicatifs, 2010.

Tyxml. Tyxml. http://ocsigen.org/tyxml/.

J. Vouillon. Lwt: a cooperative thread library. In ACM Workshop
on ML, 2008.

J. Vouillon and V. Balat. From bytecode to JavaScript: the Js_-
of_ocaml compiler. Software: Practice and Experience, 44(8):
951-972,2014. ISSN 1097-024X. doi: 10.1002/spe.2187.

2016/8/1

https://hal.archives-ouvertes.fr/hal-01349774
https://hal.archives-ouvertes.fr/hal-01349774
http://ocsigen.org/tyxml/

	Introduction
	A glimpse of the Eliom language
	Sections
	Client fragments
	Injections

	Using Eliom
	User interface widget
	Remote procedure call library

